خيارات البحث
النتائج 921 - 930 من 8,010
Comparative study on the characteristics of condensable particulate matter emitted from three kinds of coal النص الكامل
2021
Feng, Yupeng | Li, Yuzhong | Zhang, Xiaoyu | Su, Shiqian | Zhang, Zhuping | Gan, Zongwei | Dong, Yong
Condensable particulate matter (CPM) is quickly formed by several gaseous substances in flue gas after emission and belongs to primary particulate matter emitted into the atmosphere by stationary sources. Many studies have shown that current CPM emissions from coal-fired stationary sources far exceed filterable particulate matter, and the issue of CPM emissions has attracted widespread attention. The current research on CPM mainly focuses on its emission characteristics in stationary sources and its migration characteristics in pollutant-controlled equipment, lacking the characteristics of CPM directly generated by fuel combustion. In this study, a one-dimensional flame furnace is used as a stable source of flue gas in the laboratory. The concentration (including inorganic and organic components) and chemical composition (including water-soluble ions, metal elements, and organic matters) of CPM are obtained by the combustion of three kinds of coal (Inner Mongolia lignite, Jinjie bitumite, and Ningxia anthracite) that China consumes in large amounts. The characteristics of CPM including emission factors obtained from different kinds of coal under various experimental conditions are comparatively analyzed. Moreover, a scanning electron microscope–energy-dispersive spectrometer is used to observe the morphology and elemental composition of CPM collected on the filter membrane after the combustion of different kinds of coal. Results show that CPM is mainly in the form of droplets or spheres, and heavy metal elements such as Hg, As, Se, and Sb are detected. These valuable data will enrich people’s understanding of the characteristics of CPM generated by coal combustion and can provide data references for evaluating the influence of CPM on the environment.
اظهر المزيد [+] اقل [-]Evaluation and comparison of the mitochondrial and developmental toxicity of three strobilurins in zebrafish embryo/larvae النص الكامل
2021
Yang, Lihua | Huang, Tao | Li, Ruiwen | Souders, Christopher L. | Rheingold, Spencer | Tischuk, Claire | Li, Na | Zhou, Bingsheng | Martyniuk, Christopher J.
Strobilurin fungicides have been frequently detected in aquatic environments and can induce mitochondrial toxicity to non-target aquatic organisms. However, the derived toxicity and subsequent mechanisms related to their adverse effects are not fully elucidated. In the present study, we compared the mitochondrial and developmental toxicity of azoxystrobin, pyraclostrobin, and trifloxystrobin using zebrafish embryo/larvae. The results showed that all three strobilurins inhibited mitochondrial and non-mitochondrial respiration (the potency is pyraclostrobin ≈ trifloxystrobin > azoxystrobin). Behavioral changes indicated that sublethal doses of pyraclostrobin and azoxystrobin caused hyperactivity of zebrafish larvae in dark cycles, whereas trifloxystrobin resulted in hypoactivity of zebrafish larvae. In addition, pyraclostrobin exposure impaired the inflation of swim bladder, and caused down-regulation of annexin A5 (anxa5) mRNA levels, and up-regulated transcript levels of pre-B-cell leukemia homeobox 1a (pbx1a); conversely, azoxystrobin and trifloxystrobin did not cause detectable effects with swim bladder inflation. Molecular docking results indicated that azoxystrobin had higher interacting potency with iodotyrosine deiodinase (IYD), prolactin receptor (PRLR), antagonistic conformation of thyroid hormone receptor β (TRβ) and glucocorticoid receptor (GR) compared to pyraclostrobin and trifloxystrobin; pyraclostrobin and azoxystrobin were more likely to interact with the antagonistic conformation of TRβ and GR, respectively. These results may partially explain the different effects observed in behavior and swim bladder inflation, and also point to potential endocrine disruption induced by these strobilurins. Taken together, our study revealed that all three strobilurins alter mitochondrial bioenergetics and cause developmental toxicity. However, the toxic phenotypes and underlying mechanisms of each chemical may differ, and this requires further investigation. Pyraclostrobin showed higher mitochondrial toxicity at lethal doses and higher developmental toxicity at sublethal doses compared to the two other strobilurins tested. These results provide novel information for toxicological study as well as risk assessment of strobilurin fungicides.
اظهر المزيد [+] اقل [-]Patterns of distribution and accumulation of trace metals in Hysterothylacium sp. (Nematoda), Phyllodistomum sp. (Digenea) and in its fish host Hoplias malabaricus, from two neotropical rivers in southeastern Brazil النص الكامل
2021
Rosa Leite, Lucas Aparecido | dos Reis Pedreira Filho, Walter | Kozlowiski de Azevedo, Rodney | Doro Abdallah, Vanessa
Here we evaluated the potential for trace metal accumulation of two parasitic species, Hysterothylacium sp. (Nematoda) and Phyllodistomum sp. (Digenea), found parasitizing Hoplias malabaricus, a characiform fish also known as trahira, collected from two neotropical rivers, Jacaré-Pepira and Jacaré-Guaçú, in southeastern Brazil. Fish were collected between July 2017 and July 2019, totaling 90 fish specimens analyzed, 45 from each river. From fish, we take samples of three different tissues: muscle, intestine and liver. Along with the parasite samples taken from fish hosts, tissue samples were analyzed by an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) for obtaining the trace metal (Al, Cr, Mn, Fe, Ni, Cu, As, Cd e Pb) concentrations. All elements were found in statistically higher concentrations in the parasites, both nematodes and digeneans, than in the host tissues, but in comparison, was observed that Hysterothylacium sp. had higher concentrations than those obtained in Phyllodistomum sp. We also found that uninfected fish had statistically higher concentrations of metals than infected ones. And in those who are infected, the size of the parasitic infrapopulations correlated negatively with the concentrations of trace metals obtained in the hosts tissues, that is, the concentrations in fish showed a tendency to decrease as the parasitic infrapopulations increased, or vice versa. In addition, our results show that the influence of the parasitic infrapopulations on metal concentrations in the fish host is not affected in cases of mono-infection or co-infection.
اظهر المزيد [+] اقل [-]Analysis of the effect of air temperature on ammonia emission from band application of slurry النص الكامل
2021
Pedersen, Johanna | Nyord, Tavs | Feilberg, Anders | Labouriau, Rodrigo
Field application of liquid animal manure (slurry) is a significant source of ammonia (NH₃) emission to the atmosphere. It is well supported by theory and previous studies that air temperature effects NH₃ flux from field applied slurry. The objectives of this study was to statistically model the response of temperature at the time of application on cumulative NH₃ emission. Data from 19 experiments measured with the same system of dynamic chambers and online measurements were included. A generalized additive model allowing to represent non-linear functional dependences of the emission on the temperature revealed that a positive response of the cumulative NH₃ emission on the temperature at the time of application up to a temperature of approximately 14 °C. Above that, the temperature effect is insignificant. Average temperature over the measuring period was not found to carry any additional information on the cumulative NH₃ emission. The lack of emission response on temperature above a certain point is assumed to be caused by drying out of the slurry and possible crust formation. This effect is hypothesized to create a physical barrier that reduce diffusion of NH₃ to the soil surface, thereby lowering the emission rate. Furthermore, the effect of the interaction between soil type and application technique and the effect of dry matter content of the slurry was derived from the model, and found to be significant on cumulative NH₃ emission predictions.
اظهر المزيد [+] اقل [-]Quantitative and qualitative evaluation of plastic particles in surface waters of the Western Black Sea النص الكامل
2021
Pojar, Iulian | Kochleus, Christian | Dierkes, Georg | Ehlers, Sonja M. | Reifferscheid, Georg | Stock, Friederike
Microplastic abundances have been studied intensively in the last years in marine and freshwater environments worldwide. Though several articles have been published about the Mediterranean Sea, only few studies about the Black Sea exist. The Black Sea drains into the Mediterranean Sea and may therefore significantly contribute to the Mediterranean marine pollution. So far, only very few articles have been published about micro-, meso- and macroplastic abundances in the Western Black Sea. In order to fill this knowledge gap and to decipher the number of plastics on the water surface, 12 samples were collected from surface waters with a neustonic net (mesh size 200 μm) in the Black Sea close to the Danube Delta and the Romanian shore. Organic matter was digested and plastic particles were isolated by density separation. The results of visual inspection, pyrolysis GC-MS (for microplastics) and ATR-FTIR (for mesoplastics >5 mm) revealed an average concentration of 7 plastic particles/m³, dominated by fibers (∼76%), followed by foils (∼13%) and fragments (∼11%). Only very few spherules were detected. The polymers polypropylene (PP) and polyethylene (PE) dominated which is in line with other studies analyzing surface waters from rivers in Western Europe as well as in China. Statistical analyses show that the plastic concentration close to the mouth of the Danube River was significantly higher than at four nearshore regions along the Romanian and Bulgarian coastline. This could be explained by plastic inputs from the Danube River into the western part of the Black Sea.
اظهر المزيد [+] اقل [-]Valorization of sorghum distillery residue to produce bioethanol for pollution mitigation and circular economy النص الكامل
2021
Chen, Wei-Hsin | Lo, Hsiu-Ju | Yu, Kai-Ling | Ong, Hwai-Chyuan | Sheen, Herng-Kuang
This research aims to study the wet torrefaction (WT) and saccharification of sorghum distillery residue (SDR) towards hydrochar and bioethanol production. The experiments are designed by Box-Behnken design from response surface methodology where the operating conditions include sulfuric acid concentration (0, 0.01, and 0.02 M), amyloglucosidase concentration (36, 51, and 66 IU), and saccharification time (120, 180, and 240 min). Compared to conventional dry torrefaction, the hydrochar yield is between 13.24 and 14.73%, which is much lower than dry torrefaction biochar (yield >50%). The calorific value of the raw SDR is 17.15 MJ/kg, which is significantly enhanced to 22.36–23.37 MJ/kg after WT. When the sulfuric acid concentration increases from 0 to 0.02 M, the glucose concentration in the product increases from 5.59 g/L to 13.05 g/L. The prediction of analysis of variance suggests that the best combination to maximum glucose production is 0.02 M H₂SO₄, 66 IU enzyme concentration, and 120 min saccharification time, and the glucose concentration is 30.85 g/L. The maximum bioethanol concentration of 19.21 g/L is obtained, which is higher than those from wheat straw (18.1 g/L) and sweet sorghum residue (16.2 g/L). A large amount of SDR is generated in the kaoliang liquor production process, which may cause environmental problems if it is not appropriately treated. This study fulfills SDR valorization for hydrochar and bioenergy to lower environmental pollution and even achieve a circular economy.
اظهر المزيد [+] اقل [-]Effects of nitrogen addition on microbial residues and their contribution to soil organic carbon in China’s forests from tropical to boreal zone النص الكامل
2021
Ma, Suhui | Chen, Guoping | Du, Enzai | Tian, Di | Xing, Aijun | Shen, Haihua | Ji, Chengjun | Zheng, Chengyang | Zhu, Jianxiao | Zhu, Jiangling | Huang, Hanyue | He, Hongbo | Zhu, Biao | Fang, Jingyun
Atmospheric nitrogen (N) deposition has a significant influence on soil organic carbon (SOC) accumulation in forest ecosystems. Microbial residues, as by-products of microbial anabolism, account for a significant fraction of soil C pools. However, how N deposition affects the accumulation of soil microbial residues in different forest biomes remains unclear. Here, we investigated the effects of six/seven-year N additions on microbial residues (amino sugar biomarkers) in eight forests from tropical to boreal zone in eastern China. Our results showed a minor change in the soil microbial residue concentrations but a significant change in the contribution of microbial residue-C to SOC after N addition. The contribution of fungal residue-C to SOC decreased under low N addition (50 kg N ha⁻¹ yr⁻¹) in the tropical secondary forest (−19%), but increased under high N addition (100 kg N ha⁻¹ yr⁻¹) in the temperate Korean pine mixed forest (+21%). The contribution of bacterial residue-C to SOC increased under the high N addition in the subtropical Castanopsis carlesii forest (+26%) and under the low N addition in the temperate birch forest (+38%), respectively. The responses of microbial residue-C in SOC to N addition depended on the changes in soil total N concentration and fungi to bacteria ratio under N addition and climate. Taken together, these findings provide the experimental evidence that N addition diversely regulates the formation and composition of microbial-derived C in SOC in forest ecosystems.
اظهر المزيد [+] اقل [-]Effect of voltage intensity on the nutrient removal performance and microbial community in the iron electrolysis-integrated aerobic granular sludge system النص الكامل
2021
Guo, Yuan | Shi, Wenxin | Zhang, Bing | Li, Weiguang | Lens, Piet N.L.
The effects of voltage intensity on the nutrient removal performance and microbial community in the iron electrolysis-integrated aerobic granular sludge (AGS) system were investigated over a period of 15 weeks. Results revealed that the application outcomes of iron electrolysis for AGS systems relied on voltage intensity. When a constant voltage of 1.5 V was applied, the sludge granulation was most obviously accelerated with a specific growth rate of the sludge diameter of 0.078 day⁻¹, and the removal efficiencies of total nitrogen (TN) and total phosphorus (TP) increased by 14.1% and 20.2%, respectively, compared to the control reactor (without the iron electrolysis-integration). Moreover, the AGS developed at different voltages included different microbial communities, whose shifts were driven by the Fe content and the average diameter of AGS. Both heterotrophic nitrifiers and mixotrophic denitrifiers were significantly enriched in the AGS developed at 1.5 V, which effectively enhanced TN removal. Together with the response of the functional genes involved in Fe, N, and P metabolism, the electrolytic iron-driven nutrient degradation pathway was further elaborated. Overall, this study clarified the optimum voltage condition when iron electrolysis was integrated into the AGS system, and revealed the enhancement mechanism of this coupling technology on nutrient removal during the treatment of low-strength municipal wastewater.
اظهر المزيد [+] اقل [-]Biological, histological and immunohistochemical studies on the toxicity of spent coffee grounds and caffeine on the larvae of Aedes aegypti (Diptera: Culicidae) النص الكامل
2021
Miranda, Franciane Rosa | Fernandes, Kenner Morais | Bernardes, Rodrigo Cupertino | Martins, Gustavo Ferreira
The mosquito Aedes aegypti is a primary vector for major arboviruses, and its control is mainly based on the use of insecticides. Caffeine and spent coffee grounds (CG) are potential agents in controlling Ae. aegypti by reducing survival and blocking larval development. In this study, we analyzed the effects of treatment with common CG (CCG: with caffeine), decaffeinated CG (DCG: with low caffeine), and pure caffeine on the survival, behavior, and morphology of the midgut of Ae. aegypti under laboratory conditions. Third instar larvae (L3) were exposed to different concentrations of CCG, DCG, and caffeine. All compounds significantly affected larval survival, and sublethal concentrations reduced larval locomotor activity, delayed development, and reduced adult life span. Damage to the midgut of treated larvae included changes in epithelial morphology, increased number of peroxidase-positive cells (more abundant in DCG-treated larvae), and caspase 3-positive cells (more abundant in CCG-treated larvae), suggesting that the treatments triggered cell damage, leading to activation of cell death. In addition, the treatments reduced the FMRFamide-positive enteroendocrine cells and dividing cells compared to the control. CG and caffeine have larvicidal effects on Ae. aegypti that warrant field testing for their potential to control mosquitoes.
اظهر المزيد [+] اقل [-]The heart of the adult goldfish Carassius auratus as a target of Bisphenol A: a multifaceted analysis النص الكامل
2021
Bisphenol A (BPA) is a contaminant whose presence in aquatic environments is increasing. In fish embryos and larvae, it severely affects cardiac development; however, its influence on the heart function of adult fish has been scarcely analyzed. This study investigated the effects of the in vivo exposure to BPA on heart physiology, morphology, and oxidative balance in the goldfish Carassius auratus. Adult fish were exposed for 4 and 10 days to two BPA concentrations (10 μM and 25 μM). Ex vivo working heart preparations showed that high concentrations of BPA negatively affected cardiac hemodynamics, as revealed by an impaired Frank-Starling response. This was paralleled by increased cardio-somatic indices and by myocardial structural changes. An altered oxidative status and a modulation of stress (HSPs) and pro-apoptotic (Bax and Cytochrome C) proteins expression were also observed in the heart of animals exposed to BPA, with detrimental effects at the highest concentration and the longest exposure time. Results suggest that, in the adult goldfish, BPA may induce stressful conditions to the heart with time- and concentration-dependent deleterious morpho-functional alterations.
اظهر المزيد [+] اقل [-]