خيارات البحث
النتائج 921 - 930 من 7,997
Analysis and occurrence of macrolide residues in stream sediments and underlying alluvial aquifer downstream from a pharmaceutical plant النص الكامل
2021
Senta, Ivan | Terzic, Senka | Ahel, Marijan
Macrolide antibiotics azithromycin (AZI), erythromycin (ERY) and clarithromycin (CLA) have been recently included in the EU Watch List of contaminants of emerging concern in the aquatic environment. However, their comprehensive assessment in different environmental compartments, by including synthesis intermediates, by-products and transformation products, is still missing. In this work, a novel method, based on pressurized liquid extraction and liquid chromatography–tandem mass spectrometry, was developed and validated for the determination of such an extended range of macrolide residues in sediment and soil samples at low ng/g levels. The method was applied to determine distribution of 13 macrolides in surface and alluvial aquifer sediments collected in a small stream with a history of chronic exposure to wastewater discharges from AZI production. The total concentrations of the target macrolide compounds in surface sediments were up to 29 μg/g and the most prominent individual macrolides were parent AZI, its synthesis intermediate N-demethyl AZI and transformation products decladinosyl AZI and N′-demethyl AZI. Some ERY-related compounds, originating from AZI synthesis, were also frequently detected, though at lower concentration levels (up to 0.31 ng/g in total). The distribution of macrolide residues in surface sediments indicated their active longitudinal transport by resuspension and redeposition of the contaminated sediment particles. The vertical concentration profiles in stream sediments and the underlying alluvial aquifer revealed that macrolide residues reached deeper alluvial sediments (up to 5 m). Moreover, significant levels of macrolides were found in groundwater samples below the streambed, with the total concentrations reaching up to 1.7 μg/L. This study highlights the importance of comprehensive chemical characterization of the macrolide residues, which were shown to persist in surface and alluvial aquifer sediment more than ten years after their discharge into the aquatic environment.
اظهر المزيد [+] اقل [-]Enrichment of potential pathogens in marine microbiomes with different degrees of anthropogenic activity النص الكامل
2021
Jurelevicius, Diogo | Cotta, Simone R. | Montezzi, Lara F. | Dias, Armando C.F. | Mason, Olivia U. | Picão, Renata C. | Jansson, Janet K. | Seldin, Lucy
Anthropogenic activities in coastal marine ecosystems can lead to an increase in the abundance of potentially harmful microorganisms in the marine environment. To understand anthropogenic impacts on the marine microbiome, we first used publicly available microbial phylogenetic and functional data to establish a dataset of bacterial genera potentially related to pathogens that cause diseases (BGPRD) in marine organisms. Representatives of low-, medium- and highly impacted marine coastal environments were selected, and the abundance and composition of their microbial communities were determined by quantitative PCR and 16 S rRNA gene sequencing. In total, 72 BGPRD were cataloged, and 11, 36 and 37 BGPRD were found in low-, medium- and highly human-impacted ecosystems, respectively. The absolute abundance of BGPRD and the co-occurrence of antibiotic resistance genes (AGR) increased with the degree of anthropogenic perturbation in these ecosystems. Anthropogenically impacted coastal microbiomes were compositionally and functionally distinct from those of less impacted sites, presenting features that may contribute to adverse outcomes for marine macrobiota in the Anthropocene era.
اظهر المزيد [+] اقل [-]A case study on integrating anaerobic digestion into agricultural activities in British Columbia: Environmental, economic and policy analysis النص الكامل
2021
Wang, Haoqi | Bi, Xiaotao | Clift, R. (Roland)
This paper provides an example of the kind of analysis needed to support better targeted policies to reduce the environmental impacts of agricultural activities, using the specific case of Anaerobic Digestion (AD) to treat animal manure and other agricultural and food wastes in British Columbia (BC). Economic and life cycle environmental performance metrics are estimated to compare integrated and stand-alone systems using the resulting biogas and digestate. Using biogas for heating outperforms purifying it for distribution as renewable natural gas (RNG). However, current policy and energy prices in BC perversely support RNG, making biogas-fired heating systems economically unattractive. The performance of biogas-fired heating system can be improved and their dependence on subsidies reduced by integration with local agricultural activities, exploiting CO₂ and digestate as by-products. Biogenic CO₂, from combustion of the biogas and from mushroom cultivation, can displace natural gas use in producing CO₂-enriched atmospheres to enhance growth rates in greenhouse production. Using digestate as growing media in greenhouses and mushroom cultivation can generate significant revenues but the environmental benefits are nugatory. Co-digestion of food waste can further improve performance by increasing biogas yield. With all extra benefits combined, integrated AD systems can increase both GHG mitigation and revenues by at least 80%. The analysis illustrates the general point that, to avoid perverse outcomes, policy measures must support options based on their actual GHG mitigation benefits, rather than targetting any specific technology.
اظهر المزيد [+] اقل [-]Trans-epithelial potential (TEP) response as an indicator of major ion toxicity in rainbow trout and goldfish exposed to 10 different salts in ion-poor water النص الكامل
2021
Po, Beverly H.K. | Wood, Chris M.
Freshwater ecosystems are facing increasing contamination by major ions. The Multi-Ion Toxicity (MIT) model, a new tool for risk assessment and regulation, predicts major ion toxicity to aquatic organisms by relating it to a critical disturbance of the trans-epithelial potential (TEP) across the gills, as predicted by electrochemical theory. The model is based on unproven assumptions. We tested some of these by directly measuring the acute TEP responses to a geometric series of 10 different single salts (NaCl, Na₂SO₄, KCl, K₂SO₄, CaCl₂, CaSO₄, MgCl₂, MgSO₄, NaHCO₃, KHCO₃) in the euryhaline rainbow trout (Oncorhynchus mykiss) and the stenohaline goldfish (Carassius auratus) acclimated to very soft, ion-poor water (hardness 10 mg CaCO₃/L). Results were compared to 24-h and 96-h LC50 data from the literature, mainly from fathead minnow (Pimephales promelas). All salts caused concentration-dependent increases in TEP to less negative/more positive values, in patterns well-described by the Michaelis-Menten equation, or a modified version incorporating substrate inhibition. The ΔTEP above baseline became close to a maximum at the 96-h LC50, except for the HCO₃⁻ salts. Furthermore, the range of ΔTEP values at the LC50 within one species was much more consistent (1.6- to 2.1-fold variation) than the molar concentrations of the different salts at the LC50 (19- to 25-fold variation). ΔTEP responses were related to cation rather than anion concentrations. Overall patterns were qualitatively similar between trout and goldfish, with some quantitative differences, and also in general accord with recently published data on three other species in harder water where ΔTEP responses were much smaller. Blood plasma Na⁺ and K⁺ concentrations were minimally affected by the exposures. The results are in accord with most but not all of the assumptions of the MIT model and support its further development as a predictive tool.
اظهر المزيد [+] اقل [-]The bioavailability of oil droplets trapped in river gravel by hyporheic flows النص الكامل
2021
Adams, Julie E. | Brown, R Stephen | Hodson, Peter V.
Little is known about the fate of oil spills in rivers. Hyporheic flows of water through river sediments exchange surface and groundwater and create upwelling and downwelling zones that are important for fish spawning and embryo development. Risk assessments of oil spills to rivers do not consider the potential for hyporheic flows to carry oil droplets into sediments and the potential for prolonged exposure of fish to trapped oil. This project assessed whether oil droplets in water flowing through gravel will be trapped and whether hydrocarbons partitioning from trapped oil droplets are bioavailable to fish. Columns packed with gravel were injected with oil-in-water dispersions prepared with light crude, medium crude, diluted bitumens, and heavy fuel oil to generate a series of oil droplet loadings. The concentrations of oil trapped in the gravel increased with oil loading and viscosity. When the columns were perfused with clean water, oil concentrations in column effluents decreased to the detection limit within the first week of water flow, with sporadically higher concentrations associated with oil droplet release. Despite the low concentrations of hydrocarbons measured in column effluent, hydrocarbons were bioavailable to juvenile rainbow trout (Oncorhynchus mykiss) for more than three weeks of water flow, as indicated by strong induction of liver ethoxyresorufin-o-deethylase activity. These findings indicate that ecological risk assessments and spill response should identify and protect areas in rivers sensitive to contaminant trapping.
اظهر المزيد [+] اقل [-]Metal stable isotopes in transplanted oysters as a new tool for monitoring anthropogenic metal bioaccumulation in marine environments: The case for copper النص الكامل
2021
Araújo, Daniel F. | Knoery, Joël | Briant, Nicolas | Ponzevera, Emmanuel | Chouvelon, Tiphaine | Auby, Isabelle | Yepez, Santiago | Bruzac, Sandrine | Sireau, Teddy | Pellouin-Grouhel, Anne | Akcha, Farida
Metal stable isotopes in transplanted oysters as a new tool for monitoring anthropogenic metal bioaccumulation in marine environments: The case for copper النص الكامل
2021
Araújo, Daniel F. | Knoery, Joël | Briant, Nicolas | Ponzevera, Emmanuel | Chouvelon, Tiphaine | Auby, Isabelle | Yepez, Santiago | Bruzac, Sandrine | Sireau, Teddy | Pellouin-Grouhel, Anne | Akcha, Farida
Metal release into the environment from anthropogenic activities may endanger ecosystems and human health. However, identifying and quantifying anthropogenic metal bioaccumulation in organisms remain a challenging task. In this work, we assess Cu isotopes in Pacific oysters (C. gigas) as a new tool for monitoring anthropogenic Cu bioaccumulation into marine environments. Arcachon Bay was taken as a natural laboratory due to its increasing contamination by Cu, and its relevance as a prominent shellfish production area. Here, we transplanted 18-month old oysters reared in an oceanic neighbor area into two Arcachon Bay mariculture sites under different exposure levels to continental Cu inputs. At the end of their 12-month long transplantation period, the oysters’ Cu body burdens had increased, and was shifted toward more positive δ⁶⁵Cu values. The gradient of Cu isotope compositions observed for oysters sampling stations was consistent with relative geographic distance and exposure intensities to unknown continental Cu sources. A binary isotope mixing model based on experimental data allowed to estimate the Cu continental fraction bioaccumulated in the transplanted oysters. The positive δ⁶⁵Cu values and high bioaccumulated levels of Cu in transplanted oysters support that continental emissions are dominantly anthropogenic. However, identifying specific pollutant coastal source remained unelucidated mostly due to their broader and overlapping isotope signatures and potential post-depositional Cu isotope fractionation processes. Further investigations on isotope fractionation of Cu-based compounds in an aqueous medium may improve Cu source discrimination. Thus, using Cu as an example, this work combines for the first time a well-known caged bivalve approach with metal stable isotope techniques for monitoring and quantifying the bioaccumulation of anthropogenic metal into marine environments. Also, it states the main challenges to pinpoint specific coastal anthropogenic sources utilizing this approach and provides the perspectives for further studies to overcome them.
اظهر المزيد [+] اقل [-]Metal stable isotopes in transplanted oysters as a new tool for monitoring anthropogenic metal bioaccumulation in marine environments: The case for copper النص الكامل
2021
Ferreira Araujo, Daniel | Knoery, Joel | Briant, Nicolas | Ponzevera, Emmanuel | Chouvelon, Tiphaine | Auby, Isabelle | Yepez, Santiago | Bruzac, Sandrine | Sireau, Teddy | Pellouin-grouhel, Anne | Akcha, Farida
Metal release into the environment from anthropogenic activities may endanger ecosystems and human health. However, identifying and quantifying anthropogenic metal bioaccumulation in organisms remain a challenging task. In this work, we assess Cu isotopes in Pacific oysters (C. gigas) as a new tool for monitoring anthropogenic Cu bioaccumulation into marine environments. Arcachon Bay was taken as a natural laboratory due to its increasing contamination by Cu, and its relevance as a prominent shellfish production area. Here, we transplanted 18-month old oysters reared in an oceanic neighbor area into two Arcachon Bay mariculture sites under different exposure levels to continental Cu inputs. At the end of their 12-month long transplantation period, the oysters’ Cu body burdens had increased, and was shifted toward more positive δ65Cu values. The gradient of Cu isotope compositions observed for oysters sampling stations was consistent with relative geographic distance and exposure intensities to unknown continental Cu sources. A binary isotope mixing model based on experimental data allowed to estimate the Cu continental fraction bioaccumulated in the transplanted oysters. The positive δ65Cu values and high bioaccumulated levels of Cu in transplanted oysters support that continental emissions are dominantly anthropogenic. However, identifying specific pollutant coastal source remained unelucidated mostly due to their broader and overlapping isotope signatures and potential post-depositional Cu isotope fractionation processes. Further investigations on isotope fractionation of Cu-based compounds in an aqueous medium may improve Cu source discrimination. Thus, using Cu as an example, this work combines for the first time a well-known caged bivalve approach with metal stable isotope techniques for monitoring and quantifying the bioaccumulation of anthropogenic metal into marine environments. Also, it states the main challenges to pinpoint specific coastal anthropogenic sources utilizing this approach and provides the perspectives for further studies to overcome them.
اظهر المزيد [+] اقل [-]Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters النص الكامل
2021
Tanvir, Rahamat Ullah | Hu, Zhiqiang | Zhang, Yanyan | Lu, Jingrang
Cyanobacterial harmful algal blooms (cyanoHABs) in freshwater bodies are mainly attributed to excess loading of nutrients [nitrogen (N) and phosphorus (P)]. This study provides a comprehensive review of how the existing nutrient (i.e., N and P) conditions and microbial ecological factors affect cyanobacterial community succession and cyanotoxin production in freshwaters. Different eutrophic scenarios (i.e., hypereutrophic vs. eutrophic conditions) in the presence of (i) high levels of N and P, (ii) a relatively high level of P but a low level of N, and (iii) a relatively high level of N but a low level of P, are discussed in association with cyanobacterial community succession and cyanotoxin production. The seasonal cyanobacterial community succession is mostly regulated by temperature in hypereutrophic freshwaters, where both temperature and nitrogen fixation play a critical role in eutrophic freshwaters. While the early cyanoHAB mitigation strategies focus on reducing P from water bodies, many more studies show that both N and P have a profound contribution to cyanobacterial blooms and toxin production. The availability of N often shapes the structure of the cyanobacterial community (e.g., the relative abundance of N₂-fixing and non-N₂-fixing cyanobacterial genera) and is positively linked to the levels of microcystin. Ecological aspects of cyanotoxin production and release, related functional genes, and corresponding nutrient and environmental conditions are also elucidated. Research perspectives on cyanoHABs and cyanobacterial community succession are discussed and presented with respect to the following: (i) role of internal nutrients and their species, (ii) P- and N-based control vs. solely P-based control of cyanoHABs, and (iii) molecular investigations and prediction of cyanotoxin production.
اظهر المزيد [+] اقل [-]Application of biodegradable cellulose-based biomass materials in wastewater treatment النص الكامل
2021
Jiang, Zishuai | Ho, Shih-Hsin | Wang, Xin | Li, Yudong | Wang, Chengyu
Water bodies contain a large number of harmful environmental pollutants, including oil, heavy metal ions and dyes, which has become a major global problem. The current work focusses on the development and future prospect of sustainable application of biodegradable cellulose-biomass materials in water treatment, considering that they show an important prospect in wastewater treatment. This paper summarizes the advantages and disadvantages of cellulose-biomass materials in removing harmful substances and pollutants from water and the key problems the technology faces. Cellulose-biomass material has unique structure, is environment friendly, degradable, renewable and provides low energy cost benefits, among other advantages. In this paper, the research progress of wastewater treatment in recent years is reviewed from the following three aspects: oil-water separation, heavy metal ions in water, and dye adsorption. The future research direction is also discussed.
اظهر المزيد [+] اقل [-]Sulfadiazine dissipation as a function of soil bacterial diversity النص الكامل
2021
de Souza, Adijailton Jose | Pereira, Arthur Prudêncio de Araújo | Andreote, Fernando Dini | Tornisielo, Valdemar Luiz | Tizioto, Polyana Cristiane | Coutinho, Luiz Lehmann | Regitano, Jussara Borges
Antibiotic residues in the environment are concerning since results in dispersion of resistance genes. Their degradation is often closely related to microbial metabolism. However, the impacts of soil bacterial community on sulfadiazine (SDZ) dissipation remains unclear, mainly in tropical soils. Our main goals were to evaluate effects of long-term swine manure application on soil bacterial structure as well as effects of soil microbial diversity depletion on SDZ dissipation, using “extinction dilution approach” and ¹⁴C-SDZ. Manure application affected several soil attributes, such as pH, organic carbon (OC), and macronutrient contents as well as bacterial community structure and diversity. Even minor bacterial diversity depletion impacted SDZ mineralization and non-extractible residue (NER) formation rates, but NER recovered along 42 d likely due to soil diversity recovery. However, this period may be enough to spread resistance genes into the environment. Surprisingly, the non-manured natural soil (NS–S1) showed faster SDZ dissipation rate (DT₉₀ = 2.0 versus 21 d) and had a great number of bacterial families involved in major SDZ dissipation pathways (mineralization and mainly NER), such as Isosphaeraceae, Ktedonobacteraceae, Acidobacteriaceae_(Subgroup_1), Micromonosporaceae, and Sphingobacteriaceae. This result is unique and contrasts our hypothesis that long-term manured soils would present adaptive advantages and, consequently, have higher SDZ dissipation rates. The literature suggests instantaneous chemical degradation of SDZ in acidic soils responsible to the fast formation of NER. Our results show that if chemical degradation happens, it is soon followed by microbial metabolism (biodegradation) performed by a pool of bacteria and the newly formed metabolites should favors NER formation since SDZ presented low sorption. It also showed that SDZ mineralization is a low redundancy function.
اظهر المزيد [+] اقل [-]Vertical migration of microplastics along soil profile under different crop root systems النص الكامل
2021
Li, Haixiao | Lu, Xueqiang | Wang, Shiyu | Zheng, Boyang | Xu, Yan
Microplastics are highly accumulated in soils and supposed to migrate vertically due to water infiltration, fauna activities, and root growth. In this study, the vertical migration of microplastics along soil profile under three crop roots (corn, soybean, and ryegrass) was analyzed by a laboratory-scale incubation experiment. When microplastics were initially distributed in the surface layer, crop roots showed little effects on the vertical migration of microplastics. But in terms of homogenous microplastic distribution along soil profile, corn roots could contribute to the upward movement of microplastics in the middle layers (7–12 cm). It could be related to more pores and fissures created by primary and secondary corn roots and buoyancy effects once the pores and fissures were filled with water. Additionally, a significant positive correlation between microplastic numbers and tertiary roots of ryegrass has been observed and indicated the microplastic retention ability of fine crop roots. According to the results, in contrast to the downward microplastic migration caused by water infiltration and soil fauna activities, crop roots tended to move microplastics upwards or maintain them in soil layers.
اظهر المزيد [+] اقل [-]