خيارات البحث
النتائج 931 - 940 من 6,548
Insights into the transcriptional responses of a microbial community to silver nanoparticles in a freshwater microcosm النص الكامل
2020
Lu, Tao | Qu, Qian | Lavoie, Michel | Pan, Xiangjie | Peijnenburg, W.J.G.M. | Zhou, Zhigao | Pan, Xiangliang | Cai, Zhiqiang | Qian, Haifeng
Silver nanoparticles (AgNPs) are widely used because of their excellent antibacterial properties. They are, however, easily discharged into the water environment, causing potential adverse environmental effects. Meta-transcriptomic analyses are helpful to study the transcriptional response of prokaryotic and eukaryotic aquatic microorganisms to AgNPs. In the present study, microcosms were used to investigate the toxicity of AgNPs to a natural aquatic microbial community. It was found that a 7-day exposure to 10 μg L⁻¹ silver nanoparticles (AgNPs) dramatically affected the structure of the microbial community. Aquatic micro eukaryota (including eukaryotic algae, fungi, and zooplankton) and bacteria (i.e., heterotrophic bacteria and cyanobacteria) responded differently to the AgNPs stress. Meta-transcriptomic analyses demonstrated that eukaryota could use multiple cellular strategies to cope with AgNPs stress, such as enhancing nitrogen and sulfur metabolism, over-expressing genes related to translation, amino acids biosynthesis, and promoting bacterial-eukaryotic algae interactions. By contrast, bacteria were negatively affected by AgNPs with less signs of detoxification than in case of eukaryota; various pathways related to energy metabolism, DNA replication and genetic repair were seriously inhibited by AgNPs. As a result, eukaryotic algae (mainly Chlorophyta) dominated over cyanobacteria in the AgNPs treated microcosms over the 7-d exposure. The present study helps to understand the effects of AgNPs on aquatic microorganisms and provides insights into the contrasting AgNPs toxicity in eukaryota and bacteria.
اظهر المزيد [+] اقل [-]Toxicity of different forms of antimony to rice plants: Effects on reactive oxidative species production, antioxidative systems, and uptake of essential elements النص الكامل
2020
Zhu, Yanming | Wu, Qianhua | Lv, HaiQin | Chen, Wenxiang | Wang, Lizhen | Shi, ShengJie | Yang, JiGang | Zhao, PingPing | Li, Yuanping | Christopher, Rensing | Liu, Hong | Feng, RenWei
Antimonite [Sb(III)] and antimonate [Sb(V)] are known to have different toxicity to plants, but the corresponding mechanisms are not fully understood. This study was conducted to investigate reactive oxygen species (ROS), antioxidant systems, and levels of certain essential elements in response to exposure to Sb(III) and Sb(V). Results showed that exposure to Sb(V) caused oxidative stress in a rice plant (Yangdao No.6). Sb(III) was shown to be more toxic than Sb(V) as judged from a lower shoot biomass, a higher loss of essential elements, and higher production of superoxide anion free radicals (O₂⁻). The toxicity of Sb(III) might partially be due to the disturbance of the O₂ˉ dismutation reaction, which resulted in root cell membrane damage under exposure to 20 mg L⁻¹ Sb(III). Sb(V) stimulated the shoot fresh weight and the shoot uptake of many essential elements. Moreover, Sb(V) and Sb(III) both stimulated the accumulation of calcium in the shoots and roots, and calcium was found to significantly correlate with the concentrations of many essential elements and with some parameters correlated to antioxidant systems, suggesting a Ca-induced regulatory mechanism. The activity of glutathione peroxidase was significantly enhanced by Sb(V) and Sb(III), suggesting a role in scavenging hydrogen peroxide. Catalase was activated by exposure to 20 mg L⁻¹ Sb(III) in the roots and by exposure to 20 mg L⁻¹ Sb(V) both in the shoots and roots. However, peroxidase was activated by exposure to 5 mg L⁻¹ Sb(III) in the shoots and by exposure to 5 mg L⁻¹ Sb(V) in the roots. This study, for the first time, showed the differences between Sb(V) and Sb(III) toxicity when looking at the antioxidant response and essential element uptake.
اظهر المزيد [+] اقل [-]Forest mosses sensitively indicate nitrogen deposition in boreal background areas النص الكامل
2020
Salemaa, Maija | Kieloaho, Antti-Jussi | Lindroos, Antti-Jussi | Merilä, Päivi | Poikolainen, Jarmo | Manninen, Sirkku
Forest mosses sensitively indicate nitrogen deposition in boreal background areas النص الكامل
2020
Salemaa, Maija | Kieloaho, Antti-Jussi | Lindroos, Antti-Jussi | Merilä, Päivi | Poikolainen, Jarmo | Manninen, Sirkku
Mosses take up nitrogen (N) mainly from precipitation through their surfaces, which makes them competent bioindicators of N deposition. We found positive relationships between the total N concentration (mossN%) of common terrestrial moss species (feather mosses Pleurozium schreberi and Hylocomium splendens, and a group of Dicranum species) and different forms of N deposition in 11–16 coniferous forests with low N deposition load in Finland. The mosses were collected either inside (Dicranum group) or both inside and outside (feather mosses) the forests. Deposition was monitored in situ as bulk deposition (BD) and stand throughfall (TF) and detected for ammonium (NH₄⁺-N), nitrate (NO₃⁻-N), dissolved organic N (DON), and total N (Nₜₒₜ, kg ha⁻¹yr⁻¹). Nₜₒₜ deposition was lower in TF than BD indicating that tree canopies absorbed N from deposition in N limited boreal stands. However, mossN% was higher inside than outside the forests. In regression equations, inorganic N in BD predicted best the mossN% in openings, while DON in TF explained most variation of mossN% in forests. An asymptotic form of mossN% vs. TF Nₜₒₜ curves in forests and free NH₄⁺-N accumulation in tissues in the southern plots suggested mosses were near the N saturation state already at the Nₜₒₜ deposition level of 3–5 kg ha⁻¹yr⁻¹. N leachate from ground litterfall apparently also contributed the N supply of mosses. Our study yielded new information on the sensitivity of boreal mosses to low N deposition and their response to different N forms in canopy TF entering moss layer. The equations predicting the Nₜₒₜ deposition with mossN% showed a good fit both in forest sites and openings, especially in case of P. schreberi. However, the open site mossN% is a preferable predictor of N deposition in monitoring studies to minimize the effect of tree canopies and N leachate from litterfall on the estimates.
اظهر المزيد [+] اقل [-]Forest mosses sensitively indicate nitrogen deposition in boreal background areas النص الكامل
2020
Salemaa, Maija | Kieloaho, Antti-Jussi | Lindroos, Antti-Jussi | Merilä, Päivi | Poikolainen, Jarmo | Manninen, Sirkku | https://orcid.org/0000-0002-4436-6413 | https://orcid.org/0000-0002-1315-6130 | 4100110710 | 4100310610 | 4100110510 | 4100310610 | Luonnonvarakeskus
Insights into the removal efficiencies of aged polycyclic aromatic hydrocarbons in humic acids of different soil aggregate fractions by various oxidants النص الكامل
2020
Tan, Wenbing | Liu, Niankai | Dang, Qiuling | Cui, Dongyu | Xi, Beidou | Yu, Hong
Chemically oxidative removal of polycyclic aromatic hydrocarbons (PAHs) in soil is related to their occurrence state. Whether the heterogeneity of natural organic matter has an effect on the occurrence of PAHs in soil and, if there is an effect, on the oxidative removal efficiency of PAHs remains unknown. In this study, the removal efficiencies of 16 priority PAHs aged in humic acids (HAs) of different soil aggregate fractions by various oxidants were investigated by combining soil fractionation and microreaction experiments. Results showed that the accumulations of PAHs in particulate HA (P-HA) and microaggregate occluded HA (MO-HA) mainly occurred in the early period of the aging time frame. In contrast, PAH accumulation in non-aggregated silt and clay associated HA (NASCA-HA) was relatively slow and tended to saturate in the late period of the aging time frame. The cumulative contents of PAHs throughout the entire aging period in MO-HA and NASCA-HA were significantly greater than that in P-HA. The aged PAHs in P-HA and NASCA-HA exhibited the highest and lowest removal efficiencies, respectively. This ranking was mainly governed by the molecular size and polarity of HAs. Sodium persulfate and potassium permanganate had the highest removal efficiencies in total PAHs in HAs, with average efficiencies of 85.8% and 79.1%, respectively, in P-HA. Hydrogen peroxide had the lowest degradation efficiency in PAHs. In particular, the degradation efficiency of total PAHs in NASCA-HA was lowered to 31.0%. PAH congeners in HAs showed a large difference in oxidative removal efficiency. Low-ring PAH was more easily degraded than medium- and high-ring PAHs, and in most treatments, fluoranthene and pyrene in the medium ring and benzo[a]pyrene in the high ring demonstrated higher efficiencies than other PAHs with the same number of rings. Our findings are useful in promoting the accurate and green remediation of PAH-contaminated soils.
اظهر المزيد [+] اقل [-]Availability of specific prey types impact pied flycatcher (Ficedula hypoleuca) nestling health in a moderately lead contaminated environment in northern Sweden النص الكامل
2020
Lidman, Johan | Jonsson, Micael | Berglund, Åsa M.M.
Anthropogenic metal contamination can cause increased stress in exposed organisms, but it can be difficult to disentangle the anthropogenic influence from natural variation in environmental conditions. In the proximity of a closed lead (Pb)/zinc (Zn) mine in northern Sweden, the health effects of Pb exposure, essential element (calcium [Ca] and Zn) uptake, and prey availability and composition were estimated on pied flycatcher (Ficedula hypoleuca) nestlings, using hemoglobin (Hb) level as a proxy for health. Pb concentration in nestling blood range between 0.00034 and 2.21 μg/g (ww) and nestlings close to the mine had higher Pb concentrations and lower Hb, but contrary to our hypothesis, Hb was not directly related to Pb accumulation. Proportions of flying terrestrial and aquatic insects in available prey and availability of flying terrestrial insects were positively associated with nestling Hb, whereas the proportion of terrestrial ground living prey, the most common prey type, showed a negative association. This suggests that positive influence of certain prey, which does not have to be the most common in the surroundings, can counteract the negative effects from Pb contamination on bird health. Nestlings inhabiting sites adjacent to lakes had an advantage in terms of prey composition and availability of preferred prey, which resulted in higher Hb. As such, our results show that during moderate exposure to metals, variation in natural conditions, such as prey availability, can have great impact on organism health compared to Pb exposure.
اظهر المزيد [+] اقل [-]A feasibility study of Indian fly ash-bentonite as an alternative adsorbent composite to sand-bentonite mixes in landfill liner النص الكامل
2020
Gupt, Chandra Bhanu | Bordoloi, Sanandam | Sekharan, Sreedeep | Sarmah, Ajit K.
Multi-layered engineered landfill consists of the bottom liner layer (mainly bentonite clay (B)) upon which the hazardous wastes are dumped. In current practice, sand (S) is mixed with bentonite to mitigate the adverse effects of using bentonite alone in the liner layer. Incorporation of waste and unutilized fly ash (FA) as an amendment material to B has been explored in terms of its hydro-mechanical properties, but not gauged its adsorption potential. Indian subcontinent primarily relies on the thermal power source, and FA dumps have already reached its full capacity. The objective of this study is to explore the adsorption characteristics of four B-FA composite mixes sourced within India, considering Pb²⁺ as a model contaminant. The effect of fly ash type, fly ash amendment rate and adsorbate concentration was explored in the current study and juxtaposed with B-S mixes, based on 960 batch adsorption tests. Both B-FA and B-S mixes reached equilibrium adsorption capacity within 65 min. At higher adsorbate concentrations (commonly observed in the liner), B-FA mixes exhibited superior adsorption capacity, mainly one mixed with Neyvelli fly ash (NFA). The effect of higher amendment rate had little impact on the adsorption capacity at different concentration, but gradually decreased the percentage removal of Pb²⁺. The B-S mix showed a drastic decrease in percentage removal at higher adsorbate concentration among all tested mixes. Systematic characterization including geotechnical properties, microstructure and chemical analysis was also done to interpret the obtained results. Both Freundlich and Langmuir models fitted the isotherm data well for all B-FA mixes. The maximum adsorption capacity from the isotherm was correlated to easily measurable Atterberg limits by two empirical relationships.
اظهر المزيد [+] اقل [-]RETRACTED: Microplastic pollution in intertidal sediments along the coastline of China النص الكامل
2020
Wang, Qing | Shan, Encui | Zhang, Bin | Teng, Jia | Wu, Di | Yang, Xin | Zhang, Chen | Zhang, Wenjing | Sun, Xiyan | Zhao, Jianmin
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).This article has been retracted at the request of the Editors-in-Chief and Authors. The corresponding author informed the journal that full permission had not been obtained to use all the samples documented in the study. The authors apologise for any inconvenience caused.
اظهر المزيد [+] اقل [-]Occurrence of caffeine in the freshwater environment: Implications for ecopharmacovigilance النص الكامل
2020
Li, Shulan | Wen, Jing | He, Bingshu | Wang, Jun | Hu, Xianmin | Liu, Juan
Owing to the substantial consumption of caffeinated food, beverages, and medicines worldwide, caffeine is considered the most representative pharmaceutically active compound (PhAC) pollutant based on its high abundance in the environment and its suitability as an indicator of the anthropogenic inputs of PhACs in water bodies. This review presents a worldwide analysis of 132 reports of caffeine residues in freshwater environments. The results indicated that more than 70% of the studies reported were from Asia and Europe, which have densely populated and industrially developed areas. However, caffeine pollution was also found to affect areas isolated from human influence, such as Antarctica. In addition, the maximum concentrations of caffeine in raw wastewater, treated wastewater, river, drinking water, groundwater, lake, catchment, reservoir, and rainwater samples were reported to be 3.60 mg/L, 55.5, 19.3, 3.39, 0.683, 174, 44.6, 4.87, and 5.40 μg/L, respectively. The seasonal variation in caffeine residues in the freshwater environment has been demonstrated. In addition, despite the fact that there was a small proportion of wastewater treatment plants in which the elimination rates of caffeine were below 60%, wastewater treatment is generally believed to have a high caffeine removal efficiency. From a pharmacy perspective, we proposed to adopt effective measures to minimize the environmental risks posed by PhACs, represented by caffeine, through a new concept known as ecopharmacovigilance (EPV). Some measures of EPV aimed at caffeine pollution have been advised, as follows: improving knowledge and perceptions about caffeine pollution among the public; listing caffeine as a high-priority PhAC pollutant, which should be targeted in EPV practices; promoting green design and production, rational consumption, and environmentally preferred disposal of caffeinated medicines, foods, and beverages; implementing intensive EPV measures in high-risk areas and during high-risk seasons; and integrating EPV into wastewater treatment programs.
اظهر المزيد [+] اقل [-]Changes in ozone photochemical regime in Fresno, California from 1994 to 2018 deduced from changes in the weekend effect النص الكامل
2020
de Foy, Benjamin | Brune, William H. | Schauer, James J.
Significant progress has been made in reducing emissions of air pollutants in the San Joaquin Valley in California. Nevertheless, from May to October, the valley still experiences numerous exceedances of the ozone health standard. As the standards are tightened, it is becoming harder to design policies to attain them. To better understand historical emissions reductions in the context of necessary future control efforts, we analyze 25 years of hourly measurements of ozone and nitrogen oxides concentrations for the hottest one third of days in Fresno using multiple linear regression analysis. We then analyze the changing dynamics of the weekend effect over the years in order to evaluate the growing importance of day-to-day carryover on ozone concentrations. A simplified model of the day-of-week pattern of ozone concentrations is used to explore the impact of same-day and previous-day concentrations. In addition to ozone, Oₓ (O₃ + NO₂) is used to distinguish reductions of atmospheric oxidants from short-duration exchanges between O₃ and NO₂. The analysis shows that there has been a significant increase in the importance of day-to-day carryover on ozone levels, and that consequently the ozone weekend effect in Fresno has changed over the last 25 years. In the 1990s, lower NOₓ on the weekend led to increased ozone on Saturdays and Sundays but levels of Oₓ remained constant. In the 2010s, lower weekend NOₓ led to reduced ozone on Saturdays, Sundays and Mondays showing that reductions in primary pollutants are sufficient to yield immediate decreases in secondary pollutants. Overall, the photochemical regime in the atmosphere has evolved such that carryover and regional pollution will be increasingly important in determining local ozone concentrations. Policies will therefore need to pay greater attention to regional emissions as local reductions may not be sufficient to meet the health standard.
اظهر المزيد [+] اقل [-]Pollution status of PAHs in surface sediments from different marginal seas along China Mainland: A quantitative evaluation on a national scale النص الكامل
2020
Yang, Wei | Zhang, Huashuang | Lang, Yinhai | Li, Zhengyan
China is one of the largest coastal countries in the world, which have all kinds of marginal systems. Studies have reported the sedimentary Polycyclic aromatic hydrocarbons (PAHs) pollution status, including their concentrations, sources and risks, in localized marginal systems, which showed significant differences. Thus, a comprehensive understanding of their pollution in marginal systems along China Mainland is urgently needed on a national scale. In the present study, the concentrations of 16 priority PAHs in surface sediments from 62 different marginal systems along China Mainland were reviewed. Their sources were identified and apportioned, and the health risks and ecological risks were also evaluated. As a result, the total sedimentary PAHs varied in a wide range of 4–3700 ng/g, with the lowest values observed in Kenting National Park in East China Sea and the highest values observed in Daliao River estuary in Bohai Sea. Their concentrations suggested that they were not contaminated-weakly contaminated in most study areas, but were contaminated-heavily contaminated in some pollution hot-spots. Source identification and apportion suggested that the sedimentary PAHs were mainly originated from coal combustion, vehicular emission, natural gas combustion and petrogenic source, but the coal combustion and vehicular emission contributed most to their emission (>90%). Risk assessment suggested that the carcinogenic risks were lower than the upper limit of the acceptable range (10⁻⁴), which were acceptable at a large spatial scale. However, for sediments from Qinhuangdao coastal wetland, Daliao River estuary and Yangpu Bay, their carcinogenic risks were higher than 10⁻⁴, which will pose high carcinogenic risks for adults. The non-carcinogenic risks were acceptable in all marginal systems with values lower than the safety guideline (<1). In the ecological risk assessment, their concentrations in some pollution hot-spots were higher than the safety guidelines (effects range low, ERL), suggesting a higher potential ecological risk.
اظهر المزيد [+] اقل [-]