خيارات البحث
النتائج 971 - 980 من 4,896
Accumulation and toxicity of monoaromatic petroleum hydrocarbons in early life stages of cod and haddock
2019
Sørensen, Lisbet | Hansen, Bjørn Henrik | Farkas, Júlia | Donald, Carey E. | Robson, William J. | Tonkin, Andrew M. | Meier, Sonnich | Rowland, Steven J.
A multitude of recent studies have documented the detrimental effects of crude oil exposure on early life stages of fish, including larvae and embryos. While polycyclic aromatic hydrocarbons (PAHs), particularly alkyl PAHs, are often considered the main cause of observed toxic effects, other crude oil derived organic compounds are usually overlooked. In the current study, comprehensive two-dimensional gas chromatography coupled to mass spectrometry was applied to investigate the body burden of a wide range of petrogenic compounds in Atlantic haddock (Melanogrammus aeglefinus) and cod (Gadus morhua) embryos that had been exposed to sublethal doses of dispersed crude oil. Several groups of alkylated monoaromatic compounds (e.g. alkyl tetralins, indanes and alkyl benzenes), as well as highly alkylated PAHs, were found to accumulate in the fish embryos upon crude oil exposure. To investigate the toxicity of the monoaromatic compounds, two models (1-isopropyl-4-methyltetralin and 1-isopropyl-4-methylindane) were synthesized and shown to bioaccumulate and cause delayed hatching in developing embryos. Minor developmental effects, including craniofacial and jaw deformations and pericardial edemas, were also observed at the highest studied concentrations of the alkylindane.
اظهر المزيد [+] اقل [-]The toxicity of 2,6-dichlorobenzoquinone on the early life stage of zebrafish: A survey on the endpoints at developmental toxicity, oxidative stress, genotoxicity and cytotoxicity
2019
Sun, Hong-Jie | Zhang, Yu | Zhang, Jing-Ying | Lin, Hongjun | Chen, Jianrong | Hong, Huachang
2,6-dichlorobenzoquinone (2,6-DCBQ), an emerging disinfection by-production, frequently occurs in reclaimed water and drinking water. However, limited information was available regarding its toxicity. To evaluate its impact, zebrafish at early life stage were exposed to 0, 10, 30, 60, 90, or 120 μg L−1 2,6-BDCQ for 72 h. Our results indicated that 2,6-BDCQ decreased zebrafish's survival rate to 65% and 44% at 90 and 120 μg L−1 treatments and increased its aberration rate to 11% and 26% at 90 μg L−1 and 120 μg L−1 treatments. Besides, 2,6-BDCQ had adverse effect on its oxidative stress (elevated superoxide dismutase activity), lipid peroxidation (increased malondialdehyde levels), DNA damage (increased 8-hydroxydeoxyguanosine contents) and apoptosis (increased caspase-3 activity). Although lower concentrations (≤60 μg L−1) of 2,6-BDCQ didn't exhibit significant effect on its survival development or lipid peroxidation of zebrafish, they induced obvious DNA damage and apoptosis occurrence. These results revealed 2,6-BDCQ caused genotoxicity and cytotoxicity to zebrafish. This study provides novel insight into 2,6-DCBQ-induced toxicity in zebrafish.
اظهر المزيد [+] اقل [-]Exploration of sources of OVOCs in various atmospheres in southern China
2019
Huang, Xiao Feng | Wang, Chuan | Zhu, Bo | Lin, Li-Liang | He, Ling-Yan
Oxygenated volatile organic compounds (OVOCs) are critical atmospheric ozone and secondary organic aerosol (SOA) precursors and radical sources, while understanding of OVOC sources in the atmosphere, especially with large anthropogenic emissions, still has large uncertainties. A high-sensitivity proton transfer reaction mass spectrometer (PTR-MS) was deployed in vastly different atmospheres in southern China, including an urban site (SZ-U), a regional site (NA-R), and a background site (NL-B). Four critical OVOCs, i.e., methanol, acetone, methyl ethyl ketone (MEK) and acetaldehyde, five groups of aromatic hydrocarbons, isoprene and acetonitrile were measured with a high time resolution. The featured relative abundance and diurnal variations of the OVOCs indicated that methanol, acetone and MEK had prominent contributions from urban industrial activities, while acetaldehyde was closely related to the photochemical formation at all three sites. The photochemical age-based parameterization method was improved locally and then applied to quantify different sources of daytime OVOCs: anthropogenic secondary and biogenic sources (together 60–73%) were always the dominant source for acetaldehyde in various atmospheres; in addition to a significant background for methanol, acetone and MEK, anthropogenic primary emissions (mostly industrial) were their dominant source at SZ-U (38–73%), while biogenic sources played the key role for them at NL-B (30–43%); biomass burning contributed a small fraction of 5–17% for the four OVOCs at the three sites.
اظهر المزيد [+] اقل [-]Wood ash effects on growth and cadmium uptake in Deschampsia flexuosa (Wavy hair-grass)
2019
Kindtler, Nikolaj Lunding | Ekelund, Flemming | Rønn, Regin | Kjøller, Rasmus | Hovmand, Mads | Vestergård, Mette | Christensen, Søren | Johansen, Jesper Liengaard
Wood ash recycling to forests is beneficial because it regains nutrients and prevents acidification, but wood ash application is restricted due to its cadmium (Cd) content. We question if Cd in wood ash represents a problem, since decreases in Cd bioavailability due to ash-induced pH changes may counteract increased total Cd concentration. We studied effects of wood ash (0, 3, 9 and 30 t ha−1) and lime (pH increase equivalent to the wood ash treatments) on growth and Cd uptake in Deschampsia flexuosa. After four months, we measured plant biomass and Cd accumulation, and extracted Cd from the soil using three different methods; HNO3 (total), EDTA (chelator-based) and NH4NO3 (salt-based). Wood ash and lime strongly stimulated plant growth. Cd concentration in the plant tissue decreased with wood ash and lime addition, and correlated positively with the NH4NO3 extractable fraction of Cd in the soil. In contrast, HNO3 and EDTA extracted more Cd with increased wood ash application. We conclude that wood ash amendment increases soil pH, total Cd concentration, nutrient levels and stimulates plant growth. However, it does not increase Cd accumulation in D. flexuosa, as pH-driven decreases in Cd bioavailability leads to reduced plant Cd uptake. Finally, soil bioavailable Cd is best determined using NH4NO3-extraction.
اظهر المزيد [+] اقل [-]Mercury contamination in resident and migrant songbirds and potential effects on body condition
2019
Ackerman, Joshua T. | Hartman, C Alex | Herzog, Mark P.
Methlymercury is a significant risk to environmental health globally. We examined the ecological drivers of methylmercury bioaccumulation in songbirds and its effect on body condition while experimentally removing the potentially confounding and predominant effects of site and habitat. We measured blood and feather mercury concentrations and body condition in nearly 1200 individuals representing resident or migrant songbirds of 52 species and 5 foraging guilds. Songbird mercury concentrations differed among species, foraging guilds, residency status, dates, and ages, but not sexes. Blood mercury concentrations 1) ranged from 0.003 in house finch to 0.85 μg/g ww in American robin, 2) were 125 times greater in insectivores than granivores and 3.6 times greater in insectivores than omnivores, 3) were 3.3 times greater in summer residents than in migrating songbirds, 4) increased by 25% throughout spring and summer, and 5) were 45% higher in adults than juveniles. Songbird mercury concentrations were negatively correlated with body condition, with blood mercury concentrations decreasing by 44% and 34% over the range of standardized body masses and fat scores, respectively. Our results highlight the importance of foraging and migration ecology in determining methylmercury contamination in birds, and the potential for reduced body condition with methylmercury exposure in songbirds.
اظهر المزيد [+] اقل [-]Mechanism of Cu(II) and Cd(II) immobilization by extracellular polymeric substances (Escherichia coli) on variable charge soils
2019
Nkoh, Jackson Nkoh | Xu, Ren-Kou | Yan, Jing | Jiang, Jun | Li, Jiu-yu | Kamran, Muhammad Aqeel
Extracellular polymeric substances (EPS) found in soils can reduce the mobility of heavy metals through the use of both electrostatic and non-electrostatic mechanisms. Their effects vary from one soil type to another. The influence of EPS from Escherichia coli on the adsorption behaviors of Cu(II) and Cd(II) by two bulk variable charge soils, Oxisol and Ultisol, was studied at constant and varied pH, and the results were compared to a constant charge Alfisol. The maximum adsorption capacities of the soils were significantly (P < 0.05) enhanced in the presence of EPS, with Cu(II) adsorption being greater. Interaction of EPS with soils made the soil surface charge more negative by neutralizing positive charges and shifting the zeta potentials in a negative direction: from −18.6 to −26.4 mV for Alfisol, +5.1 to −22.2 mV for Oxisol, and +0.3 to −28.0 mV for Ultisol at pH 5.0. The adsorption data fitted both the Freundlich and Langmuir isotherms well. Preadsorbed Cd(II) was more easily desorbed by KNO₃ than preadsorbed Cu(II) from both the control and EPS treated soils. The adsorption of both metals was governed by electrostatic and non-electrostatic mechanisms, although more Cu(II) was adsorbed through the non-electrostatic mechanism. The information obtained in this study will improve our understanding of the mechanisms involved in reducing heavy metals mobility in variable charge soils and hence, their bioavailability.
اظهر المزيد [+] اقل [-]Non-coplanar and coplanar polychlorinated biphenyls potentiate genotoxicity of aflatoxin B1 in a human hepatocyte line by enhancing CYP1A2 and CYP3A4 expression
2019
Chen, Yuting | Liu, Yungang
Polychlorinated biphenyls (PCBs) are persistent organic pollutants and hazardous to human health. Aflatoxin B1 (AFB1) is a strong carcinogen dependent on activation by cytochrome P450 (CYP) 1A2 and 3A4. Humans in some regions may be exposed to both PCBs and AFB1. Since PCBs are CYP inducers, we were interested in their combined genotoxicity. In this study, the effects of non-coplanar 2,3,3′-tri- (PCB 20), 2,2′5,5′-tetra- (PCB 52), 2,3,3′,4′-tetrachlorobiphenyl (PCB 56), and coplanar 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) on protein levels of CYP1A1, 1A2, and 3A4, and nuclear receptors AhR, CAR and PXR in a human hepatocyte (L-02) line were investigated. Moreover, the combined effects of each PCB and AFB1 for induction of micronuclei and double-strand DNA breaks (indicated by an elevation of γ-H2AX) were analyzed. The results indicated that PCBs 20, 52 and 56 reduced the expression of AhR, while elevated that of CAR and PXR, with thresholds at low micromolar concentrations. However, they were less potent than PCB 126, which was active at sub-nanomolar levels. Overexpression of human splice variant CAR 3 in the cells increased CYP1A2 and 3A4 levels, which were further enhanced by each non-coplanar PCB, suggesting a role of CAR in modulating CYPs. Pretreatment of cells with each test PCB potentiated both micronuclei formation and DNA damage induced by AFB1. This study suggests that both non-coplanar and coplanar PCBs may enhance the genotoxicity of AFB1, through acting on various nuclear receptors; the potentiation of AFB1 genotoxicity by PCBs and the potential health implications may deserve concerns and further investigation.
اظهر المزيد [+] اقل [-]Short-term geochemical investigation and assessment of dissolved elements from simulated ash reclaimed soil into groundwater
2019
Wang, Jiao
A soil column migration trough was used to study the leaching behavior and geochemical partitioning of fifteen elements Al, As, Cr, Cu, Fe, Mg, Sn, Sb, Zn, V, Co, Mn, Pb, Ni and Cd in simulated ash reclaimed soil. According to the results of cluster analysis for the sampling stations, there were three clusters: Cluster 1 of 7 wells with relative good groundwater quality originated from the background control area, Cluster 2 of 9 wells with worst groundwater quality in the downstream parts of the simulated ash reclaimed soil, and Cluster 3 of 2 wells with representative of samples influenced by the combined effect of injection of leaching solution and the main current. Statistical analysis identified five factor types that accounted for 83.055% of the total variance, which declined in the order: ash-soil rate > leaching intensity > water depths > flow velocity > leaching time. As, Sb, Cd, Pb and Ni were the dominant contaminants. The water around ash reclaimed soil was unsuitable for drinking. As, Mn, Cd, Sb, Co and V were the largest contributors to health risks. Soils reclaimed with fly ash can consequently be a long-time source for the transfer of toxic elements into groundwater.
اظهر المزيد [+] اقل [-]A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides
2019
Burton, Edward D. | Choppala, Girish | Karimian, Niloofar | Johnston, Scott G.
Iron oxides are important pedogenic Cr(III)-bearing phases which experience high-temperature alteration via fire-induced heating of surface soil. In this study, we examine if heating-induced alteration of Cr(III)-substituted Fe oxides can potentially facilitate rapid high-temperature oxidation of solid-phase Cr(III) to hazardous Cr(VI). Synthetic Cr(III)-substituted ferrihydrite, goethite and hematite were heated up to 800 °C for 2 h. Corresponding heating experiments were also conducted on an unpolluted Ferrosol-type soil, which had a total Cr content of 220 mg kg⁻¹, initially undetectable Cr(VI) and Fe speciation comprising a mixture of hematite, goethite and ferrihydrite (according to Fe K-edge EXAFS spectroscopy). Up to ∼50% of the initial Cr(III) was oxidised to Cr(VI) during heating of Cr(III)-substituted ferrihydrite and hematite, with the greatest extent of Cr(VI) formation occurring at 200–400 °C. In contrast, heating of Cr(III)-substituted goethite resulted in up to ∼100% of Cr(III) oxidizing to Cr(VI) as the temperature approached 800 °C. In the Ferrosol-type soil, heating at ≥400 °C also resulted in large amounts of Cr(VI) formation, with a maximum total Cr(VI) concentration of 77 mg kg⁻¹ forming at 600 °C (equating to oxidation of ∼35% of the soil's total Cr content). A relatively large portion (31–42%) of the total Cr(VI) which formed during heating of the soil was exchangeable, implying a high level of potential mobility and bioaccessibility. Overall, the results show that Cr(VI) forms rapidly via the oxidation of Fe oxide-bound Cr(III) at temperatures which occur in surface soils during fires. On this basis and given the frequency and extent of wild-fires around the world, we propose that fire-induced oxidation of Fe oxide-bound Cr(III) may represent a globally-significant pathway for the natural formation of hazardous Cr(VI) in surface soil.
اظهر المزيد [+] اقل [-]Association between perfluoroalkyl substance concentrations and blood pressure in adolescents
2019
Ma, Siyu | Xu, Cheng | Ma, Ji | Wang, Zhiqi | Zhang, Yuxi | Shu, Yaqin | Mo, Xuming
The effects of exposure to some environmental chemicals on blood pressure have been determined, but the association between non-occupational exposure to perfluoroalkyl substances (PFASs) and blood pressure in adolescents remains unknown. The association between blood pressure and PFAS concentrations was studied by analysing data from 2251 participants filtered from the population enrolled in the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2012. After adjusting for age, sex, race, BMI, cotinine level, dietary intake of calcium, caloric intake, sodium consumption, potassium consumption and sampling year, we estimated the coefficients (betas) and 95% confidence intervals (CIs) for the relationship between PFAS concentrations and blood pressure with multiple linear regression models. Potential non-linear relationships were assessed with restricted cubic spline models. Blood levels of perfluorooctane sulfonic acid (PFOS) had a strong positive association with diastolic blood pressure (DBP) in adolescents in the linear model, while the result was not significant in the non-linear model. No significant association was observed between the concentration of any other PFASs and blood pressure. According to the fully adjusted linear regression model (P = 0.041), the mean DBP values in boys in the higher PFOS quintile were 2.70% greater than the mean DBP values of boys in the lowest PFOS quintile. Furthermore, serum PFOS concentrations predominantly affected blood pressure in male adolescents compared with female adolescents. These results provide epidemiological evidence of PFOS-related increases in DBP. Further research is needed to address related issues.
اظهر المزيد [+] اقل [-]