خيارات البحث
النتائج 991 - 1000 من 5,014
Survey of bioaccessible pyrethroid insecticides and sediment toxicity in urban streams of the northeast United States النص الكامل
2019
Huff Hartz, Kara E. | Nutile, Samuel A. | Fung, Courtney Y. | Sinche, Federico L. | Moran, Patrick W. | Van Metre, Peter C. | Nowell, Lisa H. | Lydy, Michael J.
Pyrethroids are a class of widely-used insecticides that can be transported from terrestrial applications to aquatic systems via runoff and tend to sorb to organic carbon in sediments. Pyrethroid occurrence is detrimental to stream ecosystems due to toxicity to sediment-dwelling invertebrates which are particularly at risk of pyrethroid exposure in urban streams. In this work, 49 streams located in watersheds in the northeastern United States were surveyed for nine current-use pyrethroids using two extraction methods. Total sediment concentrations were determined by exhaustive chemical extraction, while bioaccessible concentrations were determined by single-point Tenax extraction. Total and bioaccessible pyrethroid concentrations were detected in 76% and 67% of the sites, and the average sum of pyrethroids was 232 ng/g organic carbon (OC) for total and 43.8 ng/g OC for bioaccessible pyrethroids. Bifenthrin was the most commonly detected pyrethroid in streambed sediments. Sediment toxicity was assessed using 10-d Hyalella azteca bioassays, and 28% and 15% of sediments caused a decrease in H. azteca biomass and survival, respectively. A temperature-based focused toxicity identification evaluation was used to assess pyrethroids as the causal factor for toxicity. The concentrations of pyrethroids was only weakly correlated with the degree of urban land use. Sediment toxicity was predicted by total and bioaccessible pyrethroid concentrations expressed as toxic units. This work suggests that bioaccessibility-based methods, such as Tenax extraction, can be a valuable tool in assessing sediment toxicity.
اظهر المزيد [+] اقل [-]Physiological responses of wheat planted in fluvo-aquic soils to di (2-ethylhexyl) and di-n-butyl phthalates النص الكامل
2019
Gao, Minling | Liu, Yu | Dong, Youming | Song, Zhengguo
Di (2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) are important pollutants that contaminate agricultural soils. We determined the effects of di (2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) on the production of reactive oxygen species, photosynthesis, and activity of antioxidant enzymes in wheat planted in fluvo-aquic soils. DBP- and DEHP-induced oxidative stress decreased the values of the photosynthetic/fluorescence parameters (except for intercellular carbon dioxide concentration) and chlorophyll content at the seedling, jointing, and booting stages. Moreover, the non-stomatal factor responsible for the net decrease in photosynthetic efficiency was identified as the decrease in fluorescence resulting from the decreased amount of chlorophyll a returning from the excited to the ground energy state. The content of superoxide anions and hydrogen peroxide in wheat leaves and roots increased with increasing DBP and DEHP supplementation, compared to the control. Antioxidant enzyme activities in the leaves and roots at the seedling stage increased at DBP and DEHP levels of 10 and 20 mg kg⁻¹, respectively, and the enzyme activities at the jointing and booting stages increased with increasing concentrations of the chemicals, compared to the control. These results demonstrated that increased levels of antioxidant enzymes play a significant role in protecting plant growth under DBP and DEHP stress.
اظهر المزيد [+] اقل [-]Endocrine disrupting chemicals in wild freshwater fishes: Species, tissues, sizes and human health risks النص الكامل
2019
Zhou, Xinyi | Yang, Zhaoguang | Luo, Zhoufei | Li, Haipu | Chen, Guoyao
Increasing attention has been devoted to the adverse effects of endocrine disrupting chemicals (EDCs) on aquatic environments, such as water, sediment and sludge. To date, few studies have investigated the bio-accumulative characteristics of EDCs in different tissues of diverse wild freshwater fish species and their combined impacts on human health. Five EDCs were investigated in the muscle, liver, gill and, especially, gonad of three fish species collected from the Xiangjiang River, southern China. Carnivorous Siniperca Chuatsi or omnivorous Cyprinus Carpio accumulated higher contents of bisphenol A (BPA) and estrone than herbivorous Parabramis Pekinensis in muscle. Furthermore, 4-n-nonylphenol and estrone were found at higher levels and more frequently in the liver, implying that the liver played an important role in basic metabolism for accumulation, biotransformation and excretion of EDCs. Highest concentrations of BPA found in the gonad revealed that the BPA may pose a serious threat to the reproductive system of aquatic organisms. The mean liver/muscle concentration ratios of 4-n-nonylphenol, BPA, estrone and 17α-ethynyl estradiol confirmed the prolonged exposure of the fish to these EDCs. In addition, the relationships between the fish sizes and the EDC concentrations analyzed by Pearson correlation analysis implied that the bioaccumulation of diethylstilbestrol and BPA increased with the growth of Parabramis Pekinensis, and there was a balance between the uptake rate and elimination rate of EDCs in Siniperca Chuatsi and Cyprinus Carpio. Most importantly, the cumulative impacts of combined EDCs on human health by fish consumption were evaluated. The total estradiol equivalent quantity of estrogens was higher than that of phenols. Also, based on the results of the Monte-Carlo simulation, the 95th percentile values of the total estimated daily intakes from consuming the three freshwater fish species from the Xiangjiang River were higher than the acceptable daily intake.
اظهر المزيد [+] اقل [-]Concentrations and gas-particle partitioning of atmospheric reactive mercury at an urban site in Beijing, China النص الكامل
2019
Zhang, Huan | Wang, Zhangwei | Wang, Chunjie | Zhang, Xiaoshan
Measurements of speciated atmospheric mercury play a key role in identifying mercury behavior in the atmosphere. In this study, we measured speciated atmospheric mercury, including gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and particulate bound mercury (PBM) (<2.5 μm), in 2015 and 2016 at an urban site in Beijing, China. The mean concentrations of GEM, RGM, and PBM were 4.70 ± 3.53 ng m−3, 18.47 ± 22.27 pg m−3, and 85.18 ± 95.34 pg m−3, respectively. The concentration of PM2.5 significantly affected the distribution of reactive mercury between the gaseous and particulate phases. With the raising of PM2.5 levels, PBM concentrations increased, on the contrary, the concentrations of RGM decreased gradually. The mean concentration of PBM during air-pollution events was more than three times that during clear days. During days with air pollution, the relative humidity significantly affected the gas-particle partitioning of reactive mercury. The linear relationships between gas-particle partitioning coefficient and meteorological factors (air temperature and relative humidity) were obtained over the four seasons. The data also showed that the gas-particle partitioning coefficient of reactive mercury was related to particle composition (e.g., Cl−, BC). The data present in this paper suggested the influence of anthropogenic emissions on reactive mercury in Beijing urban. And the findings will contribute to understand the gas-particle partitioning of reactive mercury and its influencing factors with complex urban pollution.
اظهر المزيد [+] اقل [-]Cyanobacterial bloom mitigation by sanguinarine and its effects on aquatic microbial community structure النص الكامل
2019
Lin, Yiqing | Chen, Anwei | Luo, Si | Kuang, Xiaolin | Li, Renhui | Lepo, Joe Eugene | Gu, J.-D. | Zeng, Qingru | Shao, Jihai
Sanguinarine has strong inhibitory effects against the cyanobacterium Microcystis aeruginosa. However, previous studies were mainly limited to laboratory tests. The efficacy of sanguinarine for mitigation of cyanobacterial blooms under field conditions, and its effects on aquatic microbial community structure remain unknown. To elucidate these issues, we carried out in situ cyanobacterial bloom mitigation tests. Our results showed that sanguinarine decreased population densities of the harmful cyanobacteria Microcystis and Anabaena. The inhibitory effects of sanguinarine on these cyanobacteria lasted 17 days, after which the harmful cyanobacteria recovered and again became the dominant species. Concentrations of microcystins in the sanguinarine treatments were lower than those of the untreated control except during the early stage of the field test. The results of community DNA pyrosequencing showed that sanguinarine decreased the relative abundance of the prokaryotic microorganisms Cyanobacteria, Actinobacteria, Planctomycetes and eukaryotic microorganisms of Cryptophyta, but increased the abundance of the prokaryotic phylum Proteobacteria and eukaryotic microorganisms within Ciliophora and Choanozoa. The shifting of prokaryotic microbial community in water column was directly related to the toxicity of sanguinarine, whereas eukaryotic microbial community structure was influenced by factors other than direct toxicity. Harmful cyanobacteria mitigation efficacy and microbial ecological effects of sanguinarine presented in this study will inform the broad application of sanguinarine in cyanobacteria mitigation.
اظهر المزيد [+] اقل [-]The climatology of aerosol optical thickness and radiative effects in Southeast Asia from 18-years of ground-based observations النص الكامل
2019
Khan, Rehana | Kumar, Kanike Raghavendra | Zhao, Tianliang
The present study utilizes 18 years of long-term (2001–2018) data collected from six active AERONET sites over the Indo-Gangetic Plain (IGP) and the North China Plain (NCP) areas in Southeast Asia. The annual mean (±SD) aerosol optical thickness at 440 nm (AOT₄₄₀) was found high at XiangHe (0.92 ± 0.69) and Taihu (0.90 ± 0.51) followed by Beijing (0.81 ± 0.69), Lahore (0.81 ± 0.43), and Kanpur (0.73 ± 0.35) and low at Karachi (0.52 ± 0.23). Seasonally, high AOT₄₄₀ with corresponding high Ångström exponent (ANG₄₄₀₋₈₇₀) noticed during JJA for all sites, except Kanpur, suggesting the dominance of fine-mode particles, generally associated with large anthropogenic emissions. Climatologically, an increasing (decreasing) trend was observed over IGP (NCP) sites, with the highest (lowest) percentage of departures in AOT₄₄₀ found over Beijing (Karachi). We further identified major aerosol types which showed the dominance of biomass burning, urban-industrial followed by the mixed type of aerosols. In addition, single scattering albedo (SSA), asymmetry parameter (ASP), volume size distribution (VSD), and complex aerosol refractive index (RI) showed significant temporal and spectral changes, illustrating the complexity of aerosol types. At last, the annual mean direct aerosol radiative forcing at the top, bottom, and within the atmosphere for all sites were found in the range from −17.36 ± 3.75 to −45.17 ± 4.87 W m⁻², -64.6 ± 4.86 to −93.7 ± 10.27 W m⁻², and 40.5 ± 6.43 to 68.25 ± 7.26 W m⁻², respectively, with an averaged atmospheric heating rate of 0.9–2.3 K day⁻¹. A large amount of anthropogenic aerosols showed a significant effect of heating (cooling) on the atmosphere (surface) results obviously, due to an increased rate of atmospheric heating. Therefore, the thermodynamic effects of anthropogenic aerosols on the atmospheric circulation and its structure should be taken into consideration for future study over the experimental sites.
اظهر المزيد [+] اقل [-]A simple method for detecting and quantifying microplastics utilizing fluorescent dyes - Safranine T, fluorescein isophosphate, Nile red based on thermal expansion and contraction property النص الكامل
2019
Lv, Lulu | Qu, Junhao | Yu, Zihua | Chen, Daihuan | Zhou, Chunxia | Hong, Pengzhi | Sun, Shengli | Li, Chengyong
Microplastics (particle size <5 mm) are an emerging contaminant for aquatic environmental, which have attracted increasing attention in worldwide range. In this study, an improved fluorescent staining method for detection and quantification of microplastics was developed based on thermal expansion and contraction. This method is effective in detection of polyethylene, polystyrene, polyvinyl chloride and polyethylene terephthalate plastic particles. In order to avoid error statistics caused by pretreatment, various characterizations of microplastics were measured after heated, such as microstructure, compositions and thermostability. The results showed that there was no significant damage to microplastics even under heating condition at 75 °C for 30 min, and the stained microplastics had strong stability for up to two months. Moreover, this method has been successfully applied to the quantification of microplastics in biological samples and result showed there were about 54 particles g⁻¹ (dry weight) microplastics in the Sipunculus nudus. This new method provides a reliable method for quantitative analysis of microplastics in environment and biological tissue.
اظهر المزيد [+] اقل [-]A rapid zebrafish embryo behavioral biosensor that is capable of detecting environmental β-blockers النص الكامل
2019
Gauthier, Patrick T. | Vijayan, Mathilakath M.
β-Blockers (BB) are one of the most commonly prescribed pharmaceuticals used for treating cardiovascular and acute anxiety-related disorders. This class of drugs inhibit β-adrenoceptor signalling and given their growing, widespread use, BB are routinely detected in surface waters at nM concentrations. This is concerning as trace levels of BB impart developmental and reproductive dysfunction in non-target aquatic organisms, with potential for ecological risks. To date, environmental pharmaceutical risks to non-target animals are not part of the monitoring framework due to the lack of bioassays for assessing their biological effects. Behavioral endpoints have the advantage of a systems-level integration of multiple sensory signals and motor responses for toxicity screening; however, they are not currently used for risk assessment of environmental contaminants. The zebrafish (Danio rerio) embryo photomotor response (zfPMR) has been used in high-throughput behavioral screenings for neuroactive drug effects at high, therapeutic concentrations. Our objective here was to examine if we could utilize the zfPMR for screening environmental levels of BB. Embryos were placed into 96-well plates, exposed to chemicals and/or municipal wastewater effluent (MWWE), and their zfPMRs were measured with video-analysis. To specifically target BB, embryos were co-treated with isoproterenol, a β-adrenergic agonist that stimulates the zfPMR, and the inhibition of isoproterenol-induced response was used as a biomarker of BB exposure. Our results reveal that the inhibition of isoproterenol-stimulated zfPMRs can be used as a biosensor capable of detecting BB in the parts-per-billion to parts-per-trillion in water samples, including diluted MWWE. The method developed detects BB in spite of the presence of other neuroactive compounds in water samples. This systems level approach of rapid screening for BB effects provides the most promising evidence to date that behavioral neuromodulation can be potentially applied for environmental effects monitoring of pharmaceuticals.
اظهر المزيد [+] اقل [-]Per- and polyfluoroalkyl substances display structure-dependent inhibition towards UDP-glucuronosyltransferases النص الكامل
2019
Liu, Yong-Zhe | Zhang, Zhi-Peng | Fu, Zhi-Wei | Yang, Kun | Ding, Ning | Hu, Li-Gang | Fang, Zhong-Ze | Zhuo, Xiaozhen
Per- and polyfluoroalkyl substances (PFASs) are a large group of chemicals and can be detected in environmental and human samples all over the world. Toxicity of existing and emerging PFASs will be a long-term source of concern. This study aimed to investigate structure-dependent inhibitory effects of 14 PFASs towards the activity of 11 UDP-glucuronosyltransferase (UGT) isoforms. In vitro UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was employed to determine the inhibition of PFASs towards different UGT isoforms. All the PFASs showed <75% of inhibition or stimulation effects on UGT1A3, UGT1A7, UGT1A9, UGT2B4, UGT2B7 and UGT2B17. However, PFASs showed broad inhibition on the activity of UGT1A1 and UGT1A8. The activity of UGT1A1 was inhibited by 98.8%, 98%, 79.9%, 77.1%, and 76.9% at 100 μmoL/L of perfluorodecanoic acid (PFDA), perfluorooctanesulfonic acid potassium salt (PFOS), perfluorotetradecanoic acid (PFTA), perfluorooctanoic acid (PFOA) and perfluorododecanoic acid (PFDoA), respectively. UGT1A8 was inhibited by 97.6%, 94.8%, 86.3%, 83.4% and 77.1% by PFDA, PFTA, perfluorooctadecanoic acid (PFOcDA), PFDoA and PFOS, respectively. Additionally, PFDA significantly inhibited UGT1A6 and UGT1A10 by 96.8% and 91.6%, respectively. PFDoA inhibited the activity of UGT2B15 by 88.2%. PFDA and PFOS exhibited competitive inhibition towards UGT1A1, and PFDA and PFTA showed competitive inhibition towards UGT1A8. The inhibition kinetic parameter (Kᵢ) were 3.15, 1.73, 13.15 and 20.21 μmoL/L for PFDA-1A1, PFOS-1A1, PFDA-1A8 and PFTA-1A8, respectively. The values were calculated to be 0.3 μmoL/L and 1.3 μmoL/L for the in vivo inhibition of PFDA towards UGT1A1-and UGT1A8-catalyzed metabolism of substances, and 0.2 μmoL/L and 2.0 μmoL/L for the inhibition of PFOS towards UGT1A1 and the inhibition of PFTA towards UGT1A8, respectively. Molecular docking indicated that hydrogen bonds and hydrophobic interactions contributed to the interaction between PFASs and UGT isoforms. In conclusion, exposure to PFASs might inhibit the activity of UGTs to disturb metabolism of endogenous compounds and xenobiotics. The structure-related effects of PFASs on UGTs would be very important for risk assessment of PFASs.
اظهر المزيد [+] اقل [-]Geochemical factors controlling the occurrence of high-fluoride groundwater in the western region of the Ordos basin, northwestern China النص الكامل
2019
Su, He | Wang, Jiading | Liu, Jingtao
Hydrogeochemistry and isotope hydrology were carried out to investigate the spatial distribution of fluoride (F−) and the mechanisms responsible for its enrichment in the western region of the Ordos basin, northwestern China. Sixty-two groundwater samples from the unconfined aquifer and fifty-six from confined aquifer were collected during the pre-monsoon (June 2016). Over 77% of groundwater samples from the unconfined aquifer (F− concentration up to 13.30 mg/L) and approximately 66% from confined aquifer (with a maximum F− concentration of 3.90 mg/L) exhibit F− concentrations higher than the Chinese safe drinking limit (1.0 mg/L). High-F− groundwater presents a distinctive hydrochemical characteristic: a high pH value and HCO3− concentration with Ca-poor and Na-rich. Mineral dissolution (e.g., feldspar, calcite, dolomite, fluorite), cation exchange and evaporation in the aquifers predominate the formation of groundwater chemistry, which are also important for F− enrichment in groundwater. Mixing with unconfined groundwater is a significant mechanism resulting in the occurrence of high-F− groundwater in confined aquifer. These findings indicate that physicochemical processes play crucial roles in driving F− enrichment and that may be useful for studying F− occurrence in groundwater in arid and semi-arid areas.
اظهر المزيد [+] اقل [-]