خيارات البحث
النتائج 991 - 1000 من 4,938
Tartaric acid-induced photoreductive dissolution of schwertmannite loaded with As(III) and the release of adsorbed As(III) النص الكامل
2019
Zhang, Jian | Li, Wei | Li, Ying | Zhou, Lixiang | Lan, Yeqing
Schwertmannite (SCH) has strong adsorption ability to As(III). However, there are few reports on the stability of SCH load with As(III) (SCH-As(III)). In this study, the effects of tartaric acid (TA), pH and coexisting ions including K+, Ca2+, Al3+ and CO32− on the photoreductive dissolution of SCH- As(III) and the release of the adsorbed As (III) were investigated. The results showed that under UV irradiation TA could greatly enhance the release of total Fe and total As from SCH-As(III). Nevertheless, the total Fe and total As in the solution decreased when TA was consumed up. Compared to SCH, the reductive dissolution of SCH-As(III) was obviously suppressed. In the dark, TA could slowly enhance the dissolution of SCH-As(III), but its effect on the release of adsorbed As(III) was weak. Low pH was conducive to the release of iron and arsenic. Ca2+, K+, and CO32− promoted the decrease of the dissolved total Fe in the later reaction. However, Al3+ inhibited the decrease of the dissolved total Fe and total As. The analyses of FTIR and XRD demonstrated that the mineralogical phase of SCH-As(III) after reaction changed. With light, the dissolved total Fe and total As existed mainly as Fe(II) and As(V), respectively. This is because Fe(II) was generated via ligand to metal charge transfer and As(III) was oxidized to As(V) by ·OH produced during the reaction. Thus, this study provides us with a comprehensive understanding of the stability of SCH-As(III) and the release of adsorbed As(III) in natural environments.
اظهر المزيد [+] اقل [-]An integrated approach using AHP and DEMATEL for evaluating climate change mitigation strategies of the Indian cement manufacturing industry النص الكامل
2019
Balsara, Sachin | Jain, Pramod Kumar | Ramesh, Anbanandam
Concrete, a cement-based product is the highest manufactured and second highest consumed product after water on earth. Across the world, production of cement is the most energy and emission intensive industry hence, the cement industry is currently under pressure to reduce greenhouse gases emissions (GHGEs). However, reducing the GHGEs of the cement industry especially for developing country like India is not an easy task. Cement manufacturing industry needs to focus on significant climate change mitigation strategies to reduce the GHGEs to sustain its production. This study aims at identifying significant climate change mitigation strategies of the cement manufacturing industry in the context of India. Extant literature review and expert opinion are used to identify climate change mitigation strategies of the cement manufacturing industry. In the present study, a model projects by applying both AHP and DEMATEL techniques to assess the climate change mitigation strategies of the cement industry. The AHP technique help in establishing the priorities of climate change mitigation strategies, while the DEMATEL technique forms the causal relationships among them. Through AHP, the results of this research demonstrate that Fuel emission reduction is on top most priority while the relative importance priority of the main remaining factors is Process emission reduction - Electric energy-related emission - Emission avoidance and reduction - Management mitigation measures. The findings also indicate that the main factors, Process emission reduction, and Fuel emission reduction are categorized in cause group factors, while the remaining factors, Electric energy-related emission, Emission avoidance and reduction and Management mitigation measures are in effect group factors. Present model will help supply chain analysts to develop both short-term and long-term decisive measures for effectively managing and reducing GHGEs.
اظهر المزيد [+] اقل [-]Prenatal aluminum exposure is associated with increased newborn mitochondrial DNA copy number النص الكامل
2019
Liu, Bingqing | Song, Lulu | Zhang, Lina | Wu, Mingyang | Wang, Lulin | Cao, Zhongqiang | Zhang, Bin | Xu, Shunqing | Wang, Youjie
Aluminum is a widely distributed metal that has been reported to have embryotoxicity and fetotoxicity in animal studies. However, there has been no study of the association between prenatal aluminum exposure and newborn mitochondrial DNA copy number (mtDNAcn). We aimed to investigate the effect of prenatal aluminum exposure on newborn mtDNAcn. A total of 762 mother-newborn pairs were recruited between November 2013 and March 2015 in Wuhan city, China. We measured maternal urinary aluminum concentrations at three trimesters of pregnancy. Relative mtDNAcn was measured in DNA extracted from umbilical cord blood samples. We used generalized estimating equations to assess the relationship between prenatal aluminum exposure and newborn mtDNAcn. The geometric means of creatinine corrected aluminum concentrations were 31.0 μg/g Cr (95% CI: 27.6, 34.7), 40.9 μg/g Cr (95% CI: 35.7, 46.8) and 58.4 μg/g Cr (95% CI: 51.2, 67.4) for the first, second and third trimesters, respectively. After adjustment for potential confounding factors, a doubling of maternal urinary aluminum concentrations during the second and third trimesters was related to 3.16% (95% CI: 0.88, 5.49) and 4.20% (95% CI: 1.64, 6.81) increases in newborn mtDNAcn, respectively, while the association between maternal urinary aluminum concentration during the first trimester and newborn mtDNAcn was not significant (percent difference: 0.70%, 95% CI: −2.25, 3.73). Prenatal aluminum exposure during the second and third trimesters was positively associated with newborn mtDNAcn. Further studies are essential to elucidate on the potential health consequences of newborn mtDNAcn.
اظهر المزيد [+] اقل [-]Enhancement of aqueous sulfate formation by the coexistence of NO2/NH3 under high ionic strengths in aerosol water النص الكامل
2019
Chen, Tianzeng | Chu, Biwu | Ge, Yanli | Zhang, Shuping | Ma, Qingxin | He, Hong | Li, Shao-Meng
Current air quality models usually underestimate the concentration of ambient air sulfate, but the cause of this underestimation remains unclear. One reason for the underestimation is that the sulfate formation mechanism in the models is incomplete, and does not adequately consider the impact of the synergistic effects of high concentrations of multiple pollutants on sulfate formation. In this work, the roles of gaseous NO₂, NH₃ and solution ionic strength in the formation of sulfate in the aqueous phase were quantitatively investigated using a glass reactor and a 30 m³ smog chamber, separately. The results showed that sulfate formation was enhanced to different degrees in the presence of gas-phase NO₂, NH₃ and their coexistence as solutes in both liquid solution and aerosol water. NH₃ enhances the aqueous oxidation of SO₂ by NO₂ mainly by accelerating the uptake of SO₂ through increased solubility. More importantly, we found that high ionic strength in aerosol water could significantly accelerate the aqueous oxidation of SO₂, resulting in unexpectedly high S(VI) formation rates. We estimate that under severe haze conditions, heterogeneous oxidation of SO₂ by NO₂ on aerosols may be much shorter than that through gas phase oxidation by OH, aided by high ionic strengths in aerosols. Considering the existence of complex air pollution conditions with high concentrations of NO₂, NH₃ and aerosol water, as expected in typical urban and suburban settings, the sulfate formation mechanisms revealed in the present work should be incorporated into air quality models to improve the prediction of sulfate concentrations.
اظهر المزيد [+] اقل [-]Association between urinary concentration of phthalate metabolites and impaired renal function in Shanghai adults النص الكامل
2019
Chen, Jingsi | Zhou, Xiaofeng | Zhang, Han | Liu, Yueming | Cao, Chen | Dong, Ruihua | Yuan, Yaqun | Wang, Min | Lu, Yuanan | Wu, Min | Li, Shuguang | Chen, Bo
Exposure to phthalates is reported to be associated with increased incidence of microalbuminuria and low-grade albuminuria in children and adolescents. However, this phenomenon of phthalate-related nephrotoxicity is unknown in adults.Urine samples of 1663 adults from the 2012 Shanghai Food Consumption Survey (SHFCS) were measured for 10 metabolites of 6 phthalates and for renal function parameters. Their associations were explored by linear and logistic regression models.Multivariate linear regression analysis showed that all three renal function parameters (albumin-to-creatinine ratio (ACR), β2-microglobulin (B2M), and N-acetyl-β-d-glucosaminidase (NAG)) are positively associated with six metabolites, including mono-benzylphthalate (MBzP), mono-2-ethylhexylphthalate (MEHP), mono-2-ethyl-5-oxohexyphthalate (MEOHP), mono-2-ethyl-5-hydroxyhexylphthalate (MEHHP), mono-2-ethyl-5-carboxypentylphthalate (MECPP), and mono-2-carboxymethyl-hexyl phthalate (MCMHP) (P < 0.05). Logistic analysis showed that the prevalence of hyperALBuria, hyperB2Muria, hyperNAGuria, or potentially impaired renal function (PIRF) were positively associated with urinary levels of MBzP, MEOHP, and MECPP, respectively (P < 0.05). Co-exposure to identified risk metabolites monoethylphthalate (MEP), MBzP, MEHP, MEOHP, MECPP, MEHHP, and MCMHP increased the risk of having impaired renal function.Certain metabolites of phthalates, including bis (2-ethylhexyl) phthalate (DEHP) and benzyle butyl phthalate (BBzP), were associated with impaired renal function in Shanghai adults.
اظهر المزيد [+] اقل [-]Adaptive shifts of bacterioplankton communities in response to nitrogen enrichment in a highly polluted river النص الكامل
2019
Yang, Yuzhan | Gao, Yangchun | Huang, Xuena | Ni, Ping | Wu, Yueni | Deng, Ye | Zhan, Aibin
Anthropogenic activity-mediated nutrient pollution, especially nitrogen enrichment, poses one of the major threats to river ecosystems. However, it remains unclear how and to which extent it affects aquatic microbial communities, especially in heavily polluted rivers. In this study, a significant environmental gradient, particularly nitrogen gradient, was observed along a wastewater receiving river, the North Canal River (NCR). The pollution level was highest, moderate, and lowest in the up-, middle, and down-streams, respectively. The community composition of bacterioplankton transitioned from being Betaproteobacteria-dominated upstream to Gammaproteobacteria-dominated downstream. Copiotrophic groups, such as Polynucleobacter (Betaproteobacteria) and Hydrogenophaga (Betaproteobacteria), were dominant in the upstream. Multiple statistical analyses indicated that total nitrogen (TN) was the most important factor driving the adaptive shifts of community structure. Analyses of co-occurrence networks showed that the complexity of networks was disrupted in the up- and middle streams, while enhanced in the downstream. Our findings here suggested that microbial interactions were reduced in response to the aggravation of nutrient pollution. Similar to these changes, we observed significant dissimilarity of composition of functional groups, with highest abundance of nitrogen metabolism members under the highest level of nitrogen enrichment. Further analyses indicated that most of these functional groups belonged to Betaproteobacteria, suggesting the potential coupling of community composition and function diversity. In summary, adaptive shifts of bacterioplankton community composition, as well as species interactions, occurred in response to nutrient pollution in highly polluted water bodies.
اظهر المزيد [+] اقل [-]Investigation of emission characteristics of NMVOCs over urban site of western India النص الكامل
2019
Yadav, Ravi | Sahu, L.K. | Tripathi, Nidhi | Pal, D. | Beig, G. | Jaaffrey, S.N.A.
This is the first study to characterize the variation and emission of C₂-C₅ non-methane volatile organic compounds (NMVOCs) in a semi-urban site of western India based on measurements during February–December 2015. Anthropogenic NMVOCs show clear seasonal dependence with highest in winter and lowest in monsoon season. Biogenic NMVOCs likes isoprene show highest mixing ratios in the pre-monsoon season. The diurnal variation of NMVOC species can be described by elevated values from night till morning and lower values in the afternoon hours. The elevated levels of NMVOCs during night and early morning hours were caused mainly by weaker winds, temperature inversion and reduced chemical loss. The correlations between NMVOCs, CO and NOx indicate the dominant role of various local emission sources. Use and leakage of liquefied petroleum gas (LPG) contributed to the elevated levels of propane and butanes. Mixing ratios of ethylene, propylene, CO, NOx, etc. show predominant emissions from combustion of fuels in automobiles and industries. The Positive Matrix Factorization (PMF) source apportionments were performed for the seven major emission sectors (i.e. Vehicular exhaust, Mixed industrial emissions, Biomass/Fired brick kilns/Bio-fuel, Petrochem, LPG, Gas evaporation, Biogenic). Emissions from vehicle exhaust and industry-related sources contributed to about 19% and 40% of the NMVOCs, respectively. And the rest (41%) was attributed to the emissions from biogenic sources, LPG, gasoline evaporation and biomass burning. Diurnal and seasonal variations of NMVOCs were controlled by local emissions, meteorology, OH concentrations, long-range transport and planetary boundary layer height. This study provides a good reference for framing environmental policies to improve the air quality in western region of India.
اظهر المزيد [+] اقل [-]Abundances and concentrations of brominated azo dyes detected in indoor dust النص الكامل
2019
Dhungana, Birendra | Peng, Hui | Kutarna, Steven | Umbuzeiro, Gisela | Shrestha, Sujan | Liu, Jing | Jones, Paul D. | Subedi, Bikram | Giesy, John P. | Cobb, George P.
Dust samples were collected from four indoor environments, including childcare facilities, houses, hair salons, and a research facility from the USA and were analyzed for brominated compounds using full scan liquid chromatography high-resolution mass spectrometry. A total of 240 brominated compounds were detected in these dust samples, and elemental formulas were predicted for 120 more abundant ions. In addition to commonly detected brominated flame retardants (BFRs), nitrogen-containing brominated azo dyes (BADs) were among the most frequently detected and abundant. Specifically, greater abundances of BADs were detected in indoor dusts from daycares and salons compared to houses and the research facility. Using authentic standards, a quantitative method was established for two BADs (DB373: Disperse Blue 373 and DV93: Disperse Violet 93) and 2-bromo-4,6-dinitroaniline, a commonly used precursor in azo dye production, in indoor dust. Generally, greater concentrations of DB373 (≤3850 ng/g) and DV93 (≤1190 ng/g) were observed in indoor dust from daycares highlighting children as a susceptible population to potential health risk from exposure to BADs. These data are important because, to date, targeted analysis of brominated compounds in indoor environments has focused mainly on BFRs and appears to underestimate the total amount of brominated compounds.
اظهر المزيد [+] اقل [-]Effect of calcination on structure and photocatalytic property of N-TiO2/g-C3N4@diatomite hybrid photocatalyst for improving reduction of Cr(Ⅵ) النص الكامل
2019
Sun, Qing | Hu, Xiaolong | Zheng, Shuilin | Zhang, Jian | Sheng, Jiawei
The N-TiO2/g-C3N4@diatomite (NTCD) composite has been prepared through a simple impregnation method, using titanium tetrachloride as precursor and urea as nitrogen-carbon source. Then the effects of calcination temperature on structure, surface property and photocatalytic activity of the catalysts were investigated. And XRD, TEM, XPS, FTIR and UV–vis diffuse adsorption spectroscopy were used to characterize the obtained powders. The photocatalytic activity of the NTCD was evaluated through the reduction of aqueous Cr (VI) under visible light irradiation (λ > 400 nm). The results demonstrated that the nano-TiO2 particles ranging from 15 to 30 nm in the crystal of anatase are well deposited on the surface of diatomite in the NTCD-500 which calcined at 500 °C for 2 h. Furthermore, the g-C3N4 with the lay thickness of 0.92 nm was attached to the surface of nano-TiO2. The N-doped TiO2 and g-C3N4 doped catalysts could co-enhance response in the visible light region and reduce band gap of NTCD-500 (Eg = 3.07 eV). And the NTCD-500 sample exhibited nearly 100% removal rate within 5 h for photocatalytic reduction of Cr (VI) which was higher activity than P25, crude TiO2@diatomite and g-C3N4@diatomite.
اظهر المزيد [+] اقل [-]A spectroscopic and theoretical investigation of interaction mechanisms of tetracycline and polystyrene nanospheres under different conditions النص الكامل
2019
Wan, Tian | Lu, Songhua | Cheng, Wen | Ren, Jiehui | Wang, Min | Hu, Baowei | Jia, Ziyi | Li, Ying | Sun, Yubing
Interaction mechanisms of tetracycline (TC, as a typical antibiotic) on polystyrene microsphere (PSs, as a typical nanoplastic) were conducted by the batch, spectroscopic and theoretical techniques. The batch results showed that Na+ and K+ had no obvious effects on TC adsorption towards PSs, whereas Mg2+ significantly inhibited TC adsorption at pH > 5.0 due to its induced aggregations of PSs. The maximum TC adsorption capacity of PSs in the presence of humic acid (50.99 mg/g) was higher than that of PSs (44.77 mg/g) at pH 6.0. The highly effective adsorption was attributed to electrostatic attraction, π-π interaction and hydrophobic effect, which was determined by FT-IR and XPS analysis. According to DFT (density functional theory) calculations, the adsorption energy of TC/TC+ on PSs (1.52 eV) was significantly higher than that of negative TC− (0.57 eV), whereas minimum distance of TC on PSs (3.684 Å) was shorter than that of TC− on PSs (3.988 Å). The results of theoretical calculations indicated that TC was more preferably adsorbed on PSs with more stable configuration compared to TC−. These findings indicated that PSs can be used as a promising adsorbent for immobilization and pre-concentration of TC from aqueous solutions.
اظهر المزيد [+] اقل [-]