خيارات البحث
النتائج 1 - 2 من 2
Food-waste enables carboxylated gold nanoparticles to completely abat hexavalent chromium in drinking water النص الكامل
2022
Maddaloni, Marina | Alessandri, Ivano | Vassalini, Irene
In this work we demonstrate that the synergistic combination of organic molecules extracted from food waste can empower different types of carboxylated gold nanoparticles (Au NPs) in removal of Cr(VI) species from both milliQ and real water solutions. In particular, chitosan extracted from shrimp’s shell and dissolved in an acidic active medium based on a 1:3 M mixture of ascorbic and citric acid allows citrate-capped Au NPs to improve their abatment efficiency from 18.4 to > 99% in milliQ and 80.6% in drinking water. When citrates are exchanged with 3-mercaptopropionic or 11-mercaptoundecanoic acids, the efficiency reaches 100% in both milliQ and drinking water. 11-mercaptoundecanoic acid is found to be the best capping agent in terms of efficiency and stability. Crossing of cyclic voltammetry and UV–Vis data enabled to define the main role of each individual component in abatment of Cr(VI). This study further advances research on the rational design of hybrid nanoparticle/polymer systems for environmental remediation, inspired by criteria of circular economy and environmental sustainability.
اظهر المزيد [+] اقل [-]Preparation and characterization of magnetic carboxylated nanodiamonds for vortex-assisted magnetic solid-phase extraction of ziram in food and water samples النص الكامل
2016
Yılmaz, Erkan | Soylak, Mustafa
A simple and rapid vortex-assisted magnetic solid phase extraction (VA-MSPE) method for the separation and preconcentration of ziram (zinc dimethyldithiocarbamate), subsequent detection of the zinc in complex structure of ziram by flame atomic absorption spectrometry (AAS) has been developed. The ziram content was calculated by using stoichiometric relationship between the zinc and ziram. Magnetic carboxylated nanodiamonds (MCNDs) as solid-phase extraction adsorbent was prepared and characterized by Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD) spectrometry and scanning electron microscopy (SEM). These magnetic carboxylated nanodiamonds carrying the ziram could be easily separated from the aqueous solution by applying an external magnetic field; no filtration or centrifugation was necessary. Some important factors influencing the extraction efficiency of ziram such as pH of sample solution, amount of adsorbent, type and volume of eluent, extraction and desorption time and sample volume were studied and optimized. The total extraction and detection time was lower than 10min The preconcentration factor (PF), the precision (RSD, n=7), the limit of detection (LOD) and limit of quantification (LOQ) were 160, 7.0%, 5.3µgL−1 and 17.5µgL−1, respectively. The interference of various ions has been examined and the method has been applied for the determination of ziram in various waters, foodstuffs samples and synthetic mixtures.
اظهر المزيد [+] اقل [-]