خيارات البحث
النتائج 1 - 2 من 2
Energy composting allows rapid degradation of food waste using a water bath heated with electricity or solar energy النص الكامل
2021
Food waste is a major issue in the context of pollution, climate change, and the future circular economy. Composting kitchen waste is a promising method to recycle elements, yet the efficiency of composting is limited, calling for new processes that degrade rapidly and thoroughly organic matter. Here, we built a rapid laboratory-scale aerobic composting system, equipped with a water bath fueled with either solar energy, or electricity under low sunlight. We tested compositing with and without energy. Results show that only three days are needed to raise the temperature to over 45 °C by energy composting in winter, leading to notable increases in pH, total nitrogen, and cation exchange capacity after 7 days. Composting materials were thoroughly decomposed and mature in 10 days, displaying pH of 7.5, ratio of total organic carbon to total nitrogen of 9.9, cation exchange capacity of 65.61 cmol kg⁻¹, and germination index of 80.4%. Overall, energy composting starts biodegradation quickly in 2 days, reduces effectively the inhibition from some waste compounds, decomposes organic substances well, and yields mature compost.
اظهر المزيد [+] اقل [-]Liquid Chromatographic Determination of the Cyanobacterial Toxin β-N-Methylamino-l-Alanine in Algae Food Supplements, Freshwater Fish, and Bottled Water
2009
Scott, Peter M. | Niedzwiadek, Barbara | Rawn, Dorothea F.K. | Lau, Ben P.Y.
β-N-Methylamino-l-alanine (BMAA) is a neurotoxin originally found in cycad seeds and now known to be produced by many species of freshwater and marine cyanobacteria. We developed a method for its determination in blue-green algae (BGA) food supplements, freshwater fish, and bottled water by using a strong cation-exchange, solid-phase extraction column for cleanup after 0.3 M trichloroacetic acid extraction of BGA supplements and fish. Bottled water was applied directly onto the solid-phase extraction column. For analysis of carbonated water, sonication and pH adjustment to 1.5 were needed. To determine protein-bound BMAA, the protein pellet left after extraction of the BGA supplement and fish was hydrolyzed by boiling with 6 M hydrochloric acid; BMAA was cleaned up on a C18 column and a strong cation-exchange, solid-phase extraction column. Determination of BMAA was by liquid chromatography of the fluorescent derivative formed with 9-fluorenylmethyl chloroformate. The method was validated by recovery experiments using spiking levels of 1.0 to 10 μg/g for BGA supplements, 0.5 to 5.0 μg/g for fish, and 0.002 μg/g for bottled water; mean recoveries were in the range of 67 to 89% for BGA supplements and fish, and 59 to 92% for bottled water. Recoveries of BMAA from spiked extracts of hydrolyzed protein from BGA supplements and fish ranged from 66 to 83%. The cleanup developed provides a useful method for surveying foods and supplements for BMAA and protein-bound BMAA.
اظهر المزيد [+] اقل [-]