خيارات البحث
النتائج 1 - 2 من 2
Applications of Light-Emitting Diodes (LEDs) in Food Processing and Water Treatment النص الكامل
2020
Prasad, Amritha | Du, Lihui | Zubair, Muhammad | Subedi, Samir | Ullah, Aman | Roopesh, M. S.
Light-emitting diode (LED) technology is an emerging nonthermal food processing technique that utilizes light energy with wavelengths ranging from 200 to 780 nm. Inactivation of bacteria, viruses, and fungi in water by LED treatment has been studied extensively. LED technology has also shown antimicrobial efficacy in food systems. This review provides an overview of recent studies of LED decontamination of water and food. LEDs produce an antibacterial effect by photodynamic inactivation due to photosensitization of light absorbing compounds in the presence of oxygen and DNA damage; however, such inactivation is dependent on the wavelength of light energy used. Commercial applications of LED treatment include air ventilation systems in office spaces, curing, medical applications, water treatment, and algaculture. As low penetration depth and high-intensity usage can challenge optimal LED treatment, optimization studies are required to select the right light wavelength for the application and to standardize measurements of light energy dosage.
اظهر المزيد [+] اقل [-]Mechanistic aspects of biologically synthesized silver nanoparticles against food- and water-borne microbes النص الكامل
2015
Krishnaraj, Chandran | Harper, Stacey L. | Choe, Ho Sung | Kim, Kwang-Pyo | Yun, Soon-Il
In the present study, silver nanoparticles (AgNPs) synthesized from aqueous leaves extract of Malva crispa and their mode of interaction with food- and water-borne microbes were investigated. Formation of AgNPs was conformed through UV–Vis, FE-SEM, EDS, AFM, and HR-TEM analyses. Further the concentration of silver (Ag) in the reaction mixture was conformed through ICP-MS analysis. Different concentration of nanoparticles (1–3 mM) tested to know the inhibitory effect of bacterial pathogens such as Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Salmonella typhi, Salmonella enterica and the fungal pathogens of Penicillium expansum, Penicillium citrinum, Aspergillus oryzae, Aspergillus sojae and Aspergillus niger. Interestingly, nanoparticles synthesized from 2 to 3 mM concentration of AgNO₃ showed excellent inhibitory activities against both bacterial and fungal pathogens which are well demonstrated through well diffusion, poison food technique, minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC). In addition, mode of interaction of nanoparticles into both bacterial and fungal pathogens was documented through Bio-TEM analysis. Further the genomic DNA isolated from test bacterial strains and their interaction with nanoparticles was carried out to elucidate the possible mode of action of nanoparticles against bacteria. Interestingly, AgNPs did not show any genotoxic effect against all the tested bacterial strains which are pronounced well in agarose gel electrophoresis and for supporting this study, UV–Vis and Bio-TEM analyses were carried out in which no significant changes observed compared with control. Hence, the overall results concluded that the antimicrobial activity of biogenic AgNPs occurred without any DNA damage.
اظهر المزيد [+] اقل [-]