خيارات البحث
النتائج 1 - 2 من 2
Unfolding the synergy and interaction of water-land-food nexus for sustainable resource management: A supernetwork analysis النص الكامل
2021
Yuxi, Zheng | Jingke, Hong | Changlin, Xiao | Zhangmiao, Li
Given the large amounts of water, land, and food embodied in the trade of goods and services, a key step in decoupling extensive resource consumption from the economic system is to understand the full impact of socioeconomic development on the water-land-food nexus. This study integrates input–output analysis, ecological network analysis, and Dempster–Shafer evidence theory into a supernetwork model to detect the water-land-food nexus among economic sectors with an aim to explore effective strategic paths for resource management and to facilitate the construction of a resource-saving society. Results show that most sectors of China are resource inefficient and that all resource systems are unsustainable as reflected in the low performance of their Finn's cycling index and system robustness. Meanwhile, results of flow networks analysis show an extremely uneven land resource allocation where more than 94% of the land used in China is classified as direct agricultural land. The water-land-food nexus can gain resource saving bonus via enhancing the robustness of economy. However, the co-benefits from the nexus are negligibly small for the resource utilization efficiency. The results also indicate that the relevant resource-saving policies on food and water are highly likely to gain resource co-benefits due to their similarities in sectoral importance. Correspondingly, a set of strategic measures, including adopting a tiered resource price, deepening industrial convergence of agriculture, enhancing agriculture-food nexus, and managing water or land use from the food consumer side, are designed to build a resource-saving society. The findings of this study can provide additional insights into the impacts of the economy on the water-land-food nexus, which is beneficial for achieving an efficient and coordinated management of resources.
اظهر المزيد [+] اقل [-]System dynamics modeling of food-energy-water resource security in a megacity of China: Insights from the case of Beijing النص الكامل
2022
Li, Xinqing | Zhang, Lixiao | Hao, Yan | Zhang, Pengpeng | Xiong, Xin | Shi, Zhimin
To ensure food, energy, and water (FEW) security in urban areas with high-density populations and concentrated social economic activities, it is imperative to build a better understanding of the dynamics of urban FEW systems. Using the STELLA platform, a system dynamics model named the BJ-FEW was developed by incorporating both the production and consumption sides of FEW systems into a single system-of-system model that considered the interactions between the FEW sectors within and beyond the urban economic system. This model was run for the megacity of Beijing over the period from 2000 to 2050 to simulate changes in the FEW demand and supply. Results showed that Beijing City will face an increasing challenge of FEW resource security with regard to the enlarging gap between the total demands and the local provision capability. Under the baseline scenario without policy intervention, the total demand for food, energy, and water in Beijing will incredibly reach 10 Mt, 129 Mtce, and 6.4 Bm³ in 2050. In such case, it was estimated that 75% of food, 88% of energy, and 48% of water will depend on trans-boundary imports. The implement of Xiong'an New Area Plan will be the indispensable development pathway to alleviate resource pressure in Beijing. The scenario analysis verified the positive effect of such program, which will improve the status of the resource system by reducing 15%, 29%, and 34% of the supply-demand gap for food, energy, and water. The results highlighted the necessity of a regional coordinated management strategy to build a more resilient FEW provision system.
اظهر المزيد [+] اقل [-]