خيارات البحث
النتائج 1 - 10 من 11
Comprehensive assessment of regional food-energy-water nexus with GIS-based tool النص الكامل
2019
Integration of the food, energy, and water (FEW) nexus thinking is expected to enhance cross-sectoral discussion during the process of policy development. This process can be improved with comprehensive assessment tools to provide quantitative information regarding the interdependence of the FEW nexus. A comprehensive framework of the regional FEW nexus quantitative assessment was proposed in this study. Life cycle assessment (LCA) was the core method used to evaluate the FEW inter-linkages. Land use data which can further imply the resources consumption or requirement was introduced to estimate potential changes in the nexus in future time periods. In order to display the practicality of the FEW nexus approach, a user-friendly nexus platform, a GIS-based Regional Environmental Assessment Tool for Food-Energy-Water nexus (GREAT for FEW) (http://greatforfew.enve.ntu.edu.tw/FEW/), was developed with a solid conceptual model, a database, and calculation methods. The usability of the tool was demonstrated using a Taiwanese case study. The results of the Taiwanese case showed that Scenario 1 (non-nuclear homeland policy) caused the lowest environmental impacts as compared to both Scenario 0 (baseline) and Scenario 2 (non-nuclear homeland policy with National Spatial Plan) due to better energy structures and maintenance of agricultural lands. These outcomes indicate that the selection of indicators does affect the results. Therefore, it is suggested that additional indicators should be designed based on the characteristics of the case study area and concerns of stakeholders.
اظهر المزيد [+] اقل [-]Development of a life cycle assessment tool for the assessment of food production systems within the energy, water and food nexus النص الكامل
2015
Al-Ansari, Tareq | Korre, Anna | Nie, Zhenggang | Shah, Nilay
As the demand for services and products continues to increase in light of rapid population growth, the question of energy, water and food (EWF) security is of increasing importance. The systems representing the three resources are intrinsically connected and, as such, there is a need to develop assessment tools that consider their interdependences. Specifically when evaluating the environmental performance of a food production system, it is necessary to understand its life cycle. The objective of this paper is to introduce an integrated energy, water and food life cycle assessment tool that integrates EWF resources in one robust model and at an appropriate resolution. The nexus modelling tool developed is capable of providing an environmental assessment for food production systems utilising a holistic systems approach as described by a series of subsystems that constitute each of the EWF resources. A case study set in Qatar and characterised by an agriculture sub-system, which includes the production and application of fertilisers and the raising of livestock, a water sub-system represented by mechanical and thermal desalination processes and an energy sub-system, which includes fossil fuel in the form of combined cycle natural gas based energy production and solar renewable energy is used to illustrate the model function. For the nexus system analysed it is demonstrated that the food system is the largest contributor to global warming. The GWP can be reduced by up to 30% through the utilisation of solar energy to substitute fossil fuels, which, however, comes with a significant requirement for land investment.
اظهر المزيد [+] اقل [-]Integration of greenhouse gas control technologies within the energy, water and food nexus to enhance the environmental performance of food production systems النص الكامل
2017
Al-Ansari, Tareq | Korre, Anna | Nie, Zhenggang | Shah, Nilay
The sustainability of food production systems is inherently linked with energy, water and food (EWF) resources directly and in-directly throughout their lifecycle. The understanding of the interdependencies between the three resource sectors in the context of food production can provide a measurable account for resource requirements, while meeting food security objectives. The energy, water and food Nexus tool developed by the authors has been designed to model the inter-dependency between energy, water and food resources, whilst conducting an environmental assessment of product systems. With emphasis on the inter-linkages between EWF resources, the tool quantifies material flows, natural resource and energy consumption at component unit process level. This work integrates greenhouse gas control and waste to power technologies within the energy, water and food Nexus tool and evaluates the environmental impact of a hypothetical food product system designed to deliver a perceived level of food self-sufficiency (40%) for the State of Qatar. Multiple system configurations, representative of different pathways for the delivery of consistent food products are evaluated, transforming a once linear product system into a circular design. The sub-systems added consist of a biomass integrated gasification combined cycle which recycles solid waste into useful forms of energy that can be re-used within the nexus. In addition, a carbon capture sub-system is integrated to capture and recycle CO2 from both the fossil fuel powered and the biomass integrated gasification combined cycle energy sub-systems. The integration of carbon capture with the biomass integrated gasification combined cycle transforms the carbon neutral biomass integrated gasification combined cycle process to a negative greenhouse gas emission technology known as bio-energy with carbon capture and storage. For the different scenarios and sub-system configurations considered, the global warming potential can be theoretically balanced (reduced by ∼98%) through the integration of photovoltaics, biomass integrated gasification combined cycle and carbon capture technologies. The peak global warming potential, i.e. a fully fossil fuel dependent system, is recorded at 1.73 × 10⁹ kg CO2 eq./year whilst the lowest achievable global warming potential is 2.18 × 10⁷ kg CO2 eq./year when utilising a combination of photovoltaics, carbon capture integrated with combined cycle gas turbine in addition to the integrated negative emission achieving system. The natural gas consumption is reduced by 7.8 × 10⁷ kg/year in the best case configuration, achieving a credit. In the same scenario, the photovoltaics land footprint required is calculated to a maximum of 660 ha. The maximum theoretically achievable negative emission is 1.09 × 10⁹ kg CO2/year.
اظهر المزيد [+] اقل [-]Realistic pesticide exposure through water and food amplifies long-term effects in a Limnephilid caddisfly النص الكامل
2017
Rasmussen, Jes Jessen | Reiber, Lena | Holmstrup, Martin | Liess, Matthias
Pesticides are increasingly recognized as relevant stressors in stream ecosystems. Stream biota is exposed to pesticides with low water solubility, e.g. pyrethroid insecticides, via water, habitat, and food. However, long-term effects of simultaneous exposure pathways are unknown. In this context, we conducted a microcosm experiment with the caddisfly Anabolia nervosa exposing the larvae to the pyrethroid insecticide esfenvalerate (EFV) at 0.1 and 1.0μgL−1 via (i) water, (ii) food or a (iii) combination of water and food. Combined exposure through water and food significantly reduced emergence by 60% and significantly postponed emergence timing at the highest EFV level, whereas none of the single-phase exposures showed significant effects. Moreover, our study revealed that successfully emerged females from the highest biphasic treatment level were characterised by altered composition of storage lipids indicative of reduced energy reserves. Consequently, a realistic test scenario that represents simultaneous exposure of organisms and their food may reveal substantially increased long term effects of pyrethroids when compared with current ecological risk assessment applying only single phase exposure. We recommend that relevant concurrent exposure routes of pesticides should be considered in order to derive realistic regulatory acceptable concentrations of pesticides.
اظهر المزيد [+] اقل [-]Environmental assessment of food and beverage under a NEXUS Water-Energy-Climate approach: Application to the spirit drinks النص الكامل
2020
Leivas, R. | Laso, J. | Abejón, R. | Margallo, M. | Aldaco, R.
The energy-water nexus is a concept widely established but rarely applied to product and, in particular, to food and beverage products, which have a great influence on greenhouse gases emissions. The proposed method considers the main nexus aspects in addition to other relevant aspects such as climate change, which is deeply linked with energy and water systems, and assessing process as well as product. In this framework, this study develops an integrated index (IWECN) that combines life cycle assessment (LCA) and linear programming (LP) to assess energetic, water and climate systems, enabling the identification of those products with minors energetic and water intensity and climate change effects and helping to the decision-making process and to the development of eco-innovation measures. In this case, the product assessed was one bottle (70 cl) of gin and two main hotspots were identified: the production of the glass bottle and the energy requirements of the distillation stage. Based on that, several eco-innovation strategies were proposed: the use of photovoltaic solar energy as energy source and the substitution of the glass bottle by a plastic one and by a tetra brick. The nexus results indicated that the use of solar photovoltaic energy and plastic as bottle material was the best alternative decreasing 58% the IWECN value of the production of one bottle of gin. The sensitivity analysis presented a strong preference for photovoltaic solar energy in comparison with electric power and for the reduction of the glass bottle weight or its substitution by a plastic bottle. The use of the IWECN index is extendable to any product with the aim of facilitating the decision-making process in the development of more sustainable products to introduce them in new green markets.
اظهر المزيد [+] اقل [-]Environmental assessment of vegetable crops towards the water-energy-food nexus: A combination of precision agriculture and life cycle assessment النص الكامل
2022
Del Borghi, Adriana | Tacchino, Valeria | Moreschi, Luca | Matarazzo, Agata | Gallo, Michela | Arellano Vazquez, Diego
The increase in world population and the resulting demand for food, water and energy are exerting increasing pressure on soil, water resources and ecosystems. Identification of tools to minimise the related environmental impacts within the food–energy–water nexus is, therefore, crucial. The purpose of the study is to carry out an analysis of the agri-food sector in order to improve the energy-environmental performance of four vegetable crops (beans, peas, sweet corn, tomato) through a combination of precision agriculture (PA) and life cycle assessment (LCA). Thus, PA strategies were identified and a full LCA was performed on actual and future scenarios for all crops in order to evaluate the benefits of a potential combination of these two tools. In the case study analysed, a life cycle approach was able to target water consumption as a key parameter for the reduced water availability of future climate scenarios and to set a multi-objective function combining also such environmental aspects to the original goal of yield maximisation. As a result, the combination of PA with the LCA perspective potentially allowed the path for an optimal trade-off of all the parameters involved and an overall reduction of the expected environmental impacts in future climate scenarios.
اظهر المزيد [+] اقل [-]Knowledge synthesis to support risk assessment of climate change impacts on food and water safety: A case study of the effects of water temperature and salinity on Vibrio parahaemolyticus in raw oysters and harvest waters النص الكامل
2015
Young, Ian | Gropp, Kathleen | Fazil, Aamir | Smith, Ben A.
Global climate change is expected to have multiple impacts on food and water safety. Knowledge synthesis methods can provide a credible and robust assessment of the evidence on these potential impacts to inform risk assessments. To illustrate the utility of these methods to synthesize data for a case study scenario of one of the potential impacts of climate change on food safety, and to inform a complementary risk assessment model, we conducted a systematic review of the effects of water temperature and salinity on Vibrio parahaemolyticus in raw oysters and harvest waters. We searched four bibliographic databases for literature then two independent reviewers screened 953 citations for relevance and extracted data from 120 relevant articles. Sufficient data for meta-analysis were provided in 19 articles. Random-effects meta-analysis, a quality-of-evidence assessment, and meta-regression (where applicable) were conducted on unique data subsets reporting correlation coefficients for the relationships of interest. A positive correlation was identified between water temperature and V. parahaemolyticus in oysters (r=0.58; 95% CI: 0.47 to 0.68) and water (r=0.60; 95% CI: 0.47 to 0.70). However, both analyses were significantly heterogeneous (I2=74% and I2=75%, respectively), which was not explained by the variables evaluated in meta-regression. No consistent relationship was identified for water salinity. A low and very low quality-of-evidence was identified for the water temperature and salinity relationships, irrespective of sampling media. Due to insufficient reporting and availability, we were unable to perform meta-analysis on regression coefficients for direct inclusion in the risk assessment model. However, the synthesis process provided a structured and transparent evaluation of the evidence to confirm associations between water temperature and V. parahaemolyticus densities, indicate no consistent association between salinity and V. parahaemolyticus densities, and compile available regression coefficients. Future synthesis research could evaluate other effects of climate on food and water safety to inform additional risk assessments.
اظهر المزيد [+] اقل [-]Suitability of High-Resolution Mass Spectrometry for Routine Analysis of Small Molecules in Food, Feed and Water for Safety and Authenticity Purposes: A Review النص الكامل
2021
Gavage, Maxime | Delahaut, Philippe | Gillard, Nathalie
During the last decade, food, feed and environmental analysis using high-resolution mass spectrometry became increasingly popular. Recent accessibility and technological improvements of this system make it a potential tool for routine laboratory work. However, this kind of instrument is still often considered a research tool. The wide range of potential contaminants and residues that must be monitored, including pesticides, veterinary drugs and natural toxins, is steadily increasing. Thanks to full-scan analysis and the theoretically unlimited number of compounds that can be screened in a single analysis, high-resolution mass spectrometry is particularly well-suited for food, feed and water analysis. This review aims, through a series of relevant selected studies and developed methods dedicated to the different classes of contaminants and residues, to demonstrate that high-resolution mass spectrometry can reach detection levels in compliance with current legislation and is a versatile and appropriate tool for routine testing.
اظهر المزيد [+] اقل [-]CO2 utilisation in agricultural greenhouses: A novel ‘plant to plant’ approach driven by bioenergy with carbon capture systems within the energy, water and food Nexus النص الكامل
2021
Ghiat, Ikhlas | Mahmood, Farhat | Govindan, Rajesh | Al-Ansari, Tareq
Securing the growing populations' demand for food energy and water whilst adapting to climate change is extremely challenging. In this regard, bioenergy coupled with carbon capture and storage or utilisation (BECCS/U) is an attractive solution for meeting both the population demand, and offsetting CO₂ emissions. The purpose of this study is to evaluate the effectiveness of BECCS/U pathways utilising CO₂ for agricultural enrichment in enhancing food systems and reducing GHG emissions within the energy, water and food nexus concept. The study bridges negative emissions with CO₂ fertilisation within an integrated system. It consists of a source of CO₂ represented by a biomass-based integrated gasification combined cycle with carbon capture, a CO₂ network for a sustainable CO₂ supply, and a CO₂ sink characterised by agricultural greenhouses. A techno-economic and environmental analysis of each of these subsystems is conducted, feeding to an overall performance analysis of the integrated BECCS/U pathway. Results reveal synergetic opportunities between the energy, water and food subsectors, whereby CO₂ is captured from an energy sub-system and is efficiently utilised to enhance food sub-systems by improving productivity and reducing crop water requirements. Thus, the proposed integrated BECCS/U system is able to improve food availability by enhancing the food system, increasing the yield by 13.8%, whilst reducing crop water requirements by 28%. System outputs resulted in a levelised cost of 0.35 $/kg of agricultural produce when the system is scaled-up, and an abatement of the related environmental burdens throughout the supply chain by achieving negative CO₂ emissions of 24.6 kg/m².year of cultivated land.
اظهر المزيد [+] اقل [-]Socio-economic and environmental analysis on solar thermal energy-based polygeneration system for rural livelihoods applications on an Island through interventions in the energy-water-food nexus النص الكامل
2022
Thomas, Sanju | Sahoo, Sudhansu S. | Ajithkumar, G | Thomas, Sheffy | Rout, Auroshis | Mahapatra, Swarup K.
Rural electrification is constrained by grid extension infrastructural cost, isolated low rural populations, lack of anchor loads, and repayment potential of villagers while decentralized renewable energy power is constrained by high capital cost, low reliability, and non-workable business models. Solar thermal energy can produce electricity, heating, cooling, water, and fuel and has the potential for storage for livelihood applications. Hence solar thermal energy-based cogeneration and polygeneration systems have the potential for intervention in rural livelihoods with a focus on the energy-land–water-food nexus. However, standalone solar thermal systems are capital intensive and shadowed by photovoltaics. In the current work, an island in the Indian Ocean is considered for the study, and a solar thermal energy-based hybrid polygeneration system is designed with end products such as electricity, heating, cooling for food storage, and desalinating to get pure water. The turbine, VAM, pasteurization unit, and membrane distillation unit are the considered components in the present analysis. The thermodynamic properties of the key components of the polygeneration system are identified and the energy and entropy balance of the system is done. The levelised cost of production of polygeneration outputs for 25-year operational life with an accelerated depreciation of 30% of the capital cost, over 8 years is carried out. It is found that the electricity and water pricing are INR 14.71 and INR 14.01 per unit which are not attractive. Normalization is done by adjusting the price of other polygeneration outputs namely refrigeration, hot water, and pasteurizing to make the electricity and water pricing feasible to achieve an IRR of 12.99% and payback of 9 years at a 5% annual escalation. The social cost saved with the benefit of polygeneration outputs is cumulated considering value addition in the supply chain to save agricultural produce and milk, which otherwise would have spoiled. The annual carbon emissions that are curtailed with solar thermal polygeneration outputs are cumulated and found to be 434 tonnes of carbon. The social cost and environmental cost due to carbon are considered as an incentive in the cost economic economics of polygeneration system and it is found that the IRR and payback can be improved to 17.98% and 6.2 years respectively. The work recommends policy interventions to promote decentralized solar thermal polygeneration systems for impact on rural livelihoods with a focus on the energy-water-food nexus.
اظهر المزيد [+] اقل [-]