خيارات البحث
النتائج 1 - 3 من 3
Interface between food grade flavour and water soluble galactan biopolymer to form a stable water-in-oil-in-water emulsion النص الكامل
2019
Kavitake, Digambar | Balyan, Sangeeta | Devi, Palanisamy Bruntha | Shetty, Prathapkumar Halady
In the present investigation, emulsifying potential of galactan exopolysaccharide (EPS) extracted from Weissella confusa KR780676 has been evaluated with various food grade flavours (vanilla, cardamom and pineapple). Concentration of EPS was optimized as 1% with these flavours, in addition to the effect of salinity (NaCl), monovalent ion (KCl) and temperature on emulsion activity (EA), and emulsion stability (ES) was also inspected. Filter paper wetting test exhibited water-in-oil-in-water (w/o/w) and oil-in-water (o/w) type emulsions. The extent in granule disintegration and the retrogradation process of flavour emulsions were studied with pasting properties. Electron micrography and particle size analysis revealed the morphology and the size of emulsion droplets. Thermal stability of emulsions has found 100% at various temperatures (−20 to 60 °C) for vanilla and pineapple flavour, whereas, it was varying for cardamom as per the temperature disparity. Emulsion stability of vanilla and pineapple flavour was retained as such for various concentrations of NaCl whereas decreased for cardamom in direct proportion. In case of KCl all the three flavours showed greater stability. These emulsifying properties indicate that galactan EPS can be a prospective alternative to commercial biopolymers in food and pharmaceuticals industries.
اظهر المزيد [+] اقل [-]Production of exopolysaccharides by Agrobacterium sp. CFR-24 using coconut water - a byproduct of food industry النص الكامل
2006
Shivakumar, S. | Vijayendra, S.V.N.
The work is intended to explore the suitability of underutilized coconut water (a byproduct of food industry) for the production of exopolysaccharides (EPS) by Agrobacterium sp. CFR 24. Besides checking the suitability of coconut water for the production of water-soluble (WS) and water-insoluble (WIS) EPS, certain fermentation parameters, such as initial pH, incubation period and kinetics of EPS production were investigated. The coconut water medium was found to support the production of both types of EPS. The optimal initial pH and temperature was found to be 6·0 and 30°C, respectively. In shake flask (150 rev min[superscript [-]1]) studies, high-cell density inoculum resulted in the production of 11·50 g l[superscript [-]1] of WIS-EPS and 4·01 g l[superscript [-]1] WS-EPS after 72 and 96 h of fermentation, respectively. Coconut water was found suitable for the production of microbial EPS by Agrobacterium sp. CFR 24 strain. Under optimum conditions, it produced a good amount of WIS-EPS, which is comparable with that of the sucrose medium (11 g l[superscript [-]1]). This is the first report on the use of coconut water as a fermentation medium for the production of any microbial EPS. Besides producing value-added products, use of this food industry byproduct, which is often being drained out, can significantly reduce the problem of environmental pollution.
اظهر المزيد [+] اقل [-]Improvement of Freeze-Dried Lactobacillus Plantarum Survival Using Water Extracts and Crude Fibers from Food Crops النص الكامل
2013
Hongpattarakere, Tipparat | Rattanaubon, Patcharawan | Buntin, Nirunya
A synbiotic product of combined Lactobacillus plantarum TISTR 875 with water extracts and crude fibers from corn, mungbean, and soybean was formulated to investigate the survival of L. plantarum during freeze-drying and storage. The impacts of those water extracts and crude fibers on probiotic survival were determined in both a cultural medium and a freeze-drying medium. L. plantarum cultivated in de Man, Rogosa, and Sharpe (MRS) broth containing 2 % of water extract from soybean with 2 % mungbean fiber showed only 0.11 log CFU/ml cell reduction. The survival of L. plantarum harvested at the late log phase, mid stationary, phase and late stationary phase did not show statistical significance (P > 0.05), whereas an initial pH of 6.5 and growth temperature of 37 °C showed greater impact (P < 0.05). The addition of corn extract to the freeze-drying medium as a cryoprotectant had a similar effect on L. plantarum survival as sucrose, but it was better (P < 0.05) than fructo-oligosaccharide and exopolysaccharides from Weissella cibaria A2, soybean extract, mungbean extract, soybean, corn, and mungbean fibers. A protective coating of corn extract was revealed and observed using scanning electron microscopy. The freeze-dried L. plantarum, cultivated in MRS broth containing soybean extract and mungbean fiber with corn extract as a cryoprotectant, retained high viability of 7.21 and 6.88 log CFU/ml after 8-week storage in a vacuum-packed aluminum foil-laminated polyethylene sachet and a nitrogen-flushed glass vial, respectively. ©Springer Science+Business Media New York 2012.
اظهر المزيد [+] اقل [-]