خيارات البحث
النتائج 1 - 10 من 34
Water scarcity impacts on global food production النص الكامل
2019
Dinar, Ariel | Tieu, Amanda | Huynh, Helen
In this review paper we focus on the dilemma of whether or not current fresh water supply will meet the demand/needs of agricultural crops despite the continuing impact of water scarcity. In addition, we evaluate whether an increase in future population, change in water demand and supply patterns, due to climate change, will allow sustainable food production. With increased scarcity of freshwater, new water conservation technologies and biotechnology were developed, as well as newly developed water sources such as recycled wastewater, and various water institutions, which may help ease water scarcity. With new advancements in farming practices and crop innovations global food supply is still challenged by climate change effects on both water and land resources used for food production.
اظهر المزيد [+] اقل [-]Food security amidst water scarcity: Insights on sustainable food production from Saudi Arabia النص الكامل
2015
Kajenthira Grindle, Arani | Siddiqi, Afreen | Anadon, Laura Diaz
Water, energy, and food security are of critical concern as rising population growth and rapid urbanization place greater pressure on our natural resources. The trade of ‘virtual water’ through agricultural products and its appropriation through foreign direct investment (FDI) in food production have emerged as potential strategies for water-scarce countries seeking food security. In Saudi Arabia, where domestic agricultural enterprise remains a state priority despite extreme water scarcity, a shift to overseas food production to meet domestic demand could have significant implications for water and energy use as well as local labor markets. This study evaluates the growing internationalization of food production in water-scarce countries using the case of Saudi Arabia as a microcosm to illustrate the tradeoffs in resource consumption associated with crop selection and farming practices. This analysis indicates that the implications of different types of large-scale agribusiness must be more explicitly accounted for in government policy given the non-renewable nature of groundwater and energy. This work also quantifies the increase in the import of virtual water through conventional trade, which has significant potential to minimize groundwater pumping for food production in arid environments. A brief, complementary assessment of the growing role of FDI shows that further analysis is needed to ascertain the long-term resource impacts of direct investment in overseas enterprise and to minimize potentially negative impacts on water access and rural livelihoods in target nations. Active engagement of local communities and/or more holistic investment in infrastructure or improving agricultural productivity could also help avoid the potential for conflict and contribute towards long-term sustainability.
اظهر المزيد [+] اقل [-]Water Scarcity and Future Challenges for Food Production النص الكامل
2015
Mancosu, Noemi | Snyder, R. L. (Richard L.) | Kyriakakis, Gavriil | Spano, Donatella
Present water shortage is one of the primary world issues, and according to climate change projections, it will be more critical in the future. Since water availability and accessibility are the most significant constraining factors for crop production, addressing this issue is indispensable for areas affected by water scarcity. Current and future issues related to “water scarcity” are reviewed in this paper so as to highlight the necessity of a more sustainable approach to water resource management. As a consequence of increasing water scarcity and drought, resulting from climate change, considerable water use for irrigation is expected to occur in the context of tough competition between agribusiness and other sectors of the economy. In addition, the estimated increment of the global population growth rate points out the inevitable increase of food demand in the future, with an immediate impact on farming water use. Since a noteworthy relationship exists between the water possessions of a country and the capacity for food production, assessing the irrigation needs is indispensable for water resource planning in order to meet food needs and avoid excessive water consumption.
اظهر المزيد [+] اقل [-]More people, more food, worse water?: a global review of water pollution from agriculture النص الكامل
2018
Mateo-Sagasta, Javier | Zadeh, S. M. | Turral, H.
Current patterns of agricultural expansion and intensification are bringing unprecedented environmental externalities, including impacts on water quality. While water pollution is slowly starting to receive the attention it deserves, the contribution of agriculture to this problem has not yet received sufficient consideration.We need a much better understanding of the causes and effects of agricultural water pollution as well as effective means to prevent and remedy the problem. In the existing literature, information on water pollution from agriculture is highly dispersed. This repost is a comprehensive review and covers different agricultural sectors (including crops, livestock and aquaculture), and examines the drivers of water pollution in these sectors as well as the resulting pressures and changes in water bodies, the associated impacts on human health and the environment, and the responses needed to prevent pollution and mitigate its risks.
اظهر المزيد [+] اقل [-]More people, more food, worse water?: a global review of water pollution from agriculture
2018
Mateo-Sagasta, Javier | Zadeh, S.M. | Turral, Hugh
Current patterns of agricultural expansion and intensification are bringing unprecedented environmental externalities, including impacts on water quality. While water pollution is slowly starting to receive the attention it deserves, the contribution of agriculture to this problem has not yet received sufficient consideration. We need a much better understanding of the causes and effects of agricultural water pollution as well as effective means to prevent and remedy the problem. In the existing literature, information on water pollution from agriculture is highly dispersed. This repost is a comprehensive review and covers different agricultural sectors (including crops, livestock and aquaculture), and examines the drivers of water pollution in these sectors as well as the resulting pressures and changes in water bodies, the associated impacts on human health and the environment, and the responses needed to prevent pollution and mitigate its risks.
اظهر المزيد [+] اقل [-]International Water Conference: dialogue on water, food and environment, Hanoi, Vietnam, 13-16 October 2002
2003
Wolter, H.
Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand النص الكامل
2014
Gheewala, Shabbir H. | Silalertruksa, Thapat | Nilsalab, Pariyapat | Mungkung, Rattanawan | Perret, Sylvain R. | Chaiyawannakarn, Nuttapon
The proliferation of food, feed and biofuels demands promises to increase pressure on water competition and stress, particularly for Thailand, which has a large agricultural base. This study assesses the water footprint of ten staple crops grown in different regions across the country and evaluates the impact of crop water use in different regions/watersheds by the water stress index and the indication of water deprivation potential. The ten crops include major rice, second rice, maize, soybean, mungbean, peanut, cassava, sugarcane, pineapple and oil palm. The water stress index of the 25 major watersheds in Thailand has been evaluated. The results show that there are high variations of crop water requirements grown in different regions due to many factors. However, based on the current cropping systems, the Northeastern region has the highest water requirement for both green water (or rain water) and blue water (or irrigation water). Rice (paddy) farming requires the highest amount of irrigation water, i.e., around 10,489 million m3/year followed by the maize, sugarcane, oil palm and cassava. Major rice cultivation induces the highest water deprivation, i.e., 1862 million m3H₂Oeq/year; followed by sugarcane, second rice and cassava. The watersheds that have high risk on water competition due to increase in production of the ten crops considered are the Mun, Chi and Chao Phraya watersheds. The main contribution is from the second rice cultivation. Recommendations have been proposed for sustainable crops production in the future.
اظهر المزيد [+] اقل [-]Water, food and poverty in river basins: defining the limits
2014
Fisher, Myles J. | Cook, Simon E.
Water, food and poverty in river basins: defining the limits النص الكامل
2012
Fisher, Myles J. | Cook, Simon E.
The Pivotal Role of Phosphorus in a Resilient Water–Energy–Food Security Nexus النص الكامل
2015
Jarvie, Helen P. | Sharpley, Andrew N. | Flaten, Don | Kleinman, Peter J. A. | Jenkins, Alan | Simmons, Tarra
We make the case that phosphorus (P) is inextricably linked to an increasingly fragile, interconnected, and interdependent nexus of water, energy, and food security and should be managed accordingly. Although there are many other drivers that influence water, energy, and food security, P plays a unique and under-recognized role within the nexus. The P paradox derives from fundamental challenges in meeting water, energy, and food security for a growing global population. We face simultaneous dilemmas of overcoming scarcity of P to sustain terrestrial food and biofuel production and addressing overabundance of P entering aquatic systems, which impairs water quality and aquatic ecosystems and threatens water security. Historical success in redistributing rock phosphate as fertilizer to enable modern feed and food production systems is a grand societal achievement in overcoming inequality. However, using the United States as the main example, we demonstrate how successes in redistribution of P and reorganization of farming systems have broken local P cycles and have inadvertently created instability that threatens resilience within the nexus. Furthermore, recent expansion of the biofuels sector is placing further pressure on P distribution and availability. Despite these challenges, opportunities exist to intensify and expand food and biofuel production through recycling and better management of land and water resources. Ultimately, a strategic approach to sustainable P management can help address the P paradox, minimize tradeoffs, and catalyze synergies to improve resilience among components of the water, energy, and food security nexus.
اظهر المزيد [+] اقل [-]