خيارات البحث
النتائج 1 - 5 من 5
The Nexus of Food, Energy, and Water النص الكامل
2014
Finley, John W. | Seiber, James N.
The Earth’s population is expected to exceed 9 billion by 2050, posing significant challenges in meeting human needs while minimally affecting the environment. To support this population, we will need secure and safe sources of food, energy, and water. The nexus of food, energy, and water is one of the most complex, yet critical, issues that face society. There is no more land to exploit, and the supply of fresh water in some areas of the world limits the use of land for food. All solutions must also deal with the overlay of global climate change. Meeting current and future populations needs will require security in food, energy, and water supplies. A nexus approach is needed to improve food, energy, and water security integrating the management of the limited resources while transitioning to a more “green” economy, which provides adequate food, energy, and water for the expanding human population.
اظهر المزيد [+] اقل [-]Food security under water scarcity in the Middle East: problems and solutions
2005
Hamdy, A. (ed.) | Monti, R. (ed.)
Sustainable development and the water–energy–food nexus: A perspective on livelihoods النص الكامل
2015
Biggs, Eloise M. | Bruce, Eleanor | Boruff, Bryan | Duncan, John M.A. | Horsley, Julia | Pauli, Natasha | McNeill, Kellie | Neef, Andreas | Van Ogtrop, Floris | Curnow, Jayne | Haworth, Billy | Duce, Stephanie | Imanari, Yukihiro
The water–energy–food nexus is being promoted as a conceptual tool for achieving sustainable development. Frameworks for implementing nexus thinking, however, have failed to explicitly or adequately incorporate sustainable livelihoods perspectives. This is counterintuitive given that livelihoods are key to achieving sustainable development. In this paper we present a critical review of nexus approaches and identify potential linkages with sustainable livelihoods theory and practice, to deepen our understanding of the interrelated dynamics between human populations and the natural environment. Building upon this review, we explore the concept of ‘environmental livelihood security’ – which encompasses a balance between natural resource supply and human demand on the environment to promote sustainability – and develop an integrated nexus-livelihoods framework for examining the environmental livelihood security of a system. The outcome is an integrated framework with the capacity to measure and monitor environmental livelihood security of whole systems by accounting for the water, energy and food requisites for livelihoods at multiple spatial scales and institutional levels. We anticipate this holistic approach will not only provide a significant contribution to achieving national and regional sustainable development targets, but will also be effective for promoting equity amongst individuals and communities in local and global development agendas.
اظهر المزيد [+] اقل [-]Population, food and the utilization of land and water resources of Ningxia Hui Autonomous Region
1989
Su Renqion | Ni Jianhua (Academia Sinica, Beijing (China). Commission for Integrated Survey of Natural Resources)
Thermodynamic analysis of an Energy-Water-Food (Ewf) nexus driven polygeneration system applied to coastal communities النص الكامل
2020
Luqmān, Muḥammad | Al-Ansari, Tareq
Continued rise in global human population, per capita consumption, urbanization and migration towards coastal cities present challenges in fulfilling the energy, water and food demands of coastal communities in sustainable manner. In this regard, as a solution to the problem, a new multigeneration system is proposed to address some of the most common and vital needs of such communities. The system developed is based on principles of sustainability and decentralisation and is driven by renewable energy sources including sun and biomass. It provides electricity, fresh water, hot water for domestic use, HVAC for space air-conditioning and food storage, in addition to hot air for food drying. In the proposed hybrid system, biomass energy is integrated with solar energy in a complimentary manner as a means to maximise outputs and enhance system resilience against weather conditions and day/night cycles. Designing for resilience enables a type of operation that fulfils parallel demands in a continuous stable and flexible operation which can be optimised depending on the requirements. The main sub-systems used in the proposed multigeneration system consist of a Biomass combustor, Concentrated Solar Power (CSP), a Rankine Cycle, a desalination unit and an Absorption Cooling System (ACS). A comprehensive integrated thermodynamic model of the entire system is developed by application of energy, mass, entropy and exergy balance equations. Moreover, effects of various inputs and environmental variables on the outputs and performance has also been studied. Results reveal that the proposed system is capable of fulfilling some of the coastal community’s essential requirements in an efficient and ecologically benign manner. The energy and exergy efficiencies of the proposed system are 55% and 18%, respectively. The outputs of the system include 1687 m³/day of produced fresh water, ~4 MW of cooling, ~13 MW of electricity, ~73 kg/s of hot air for food drying, and ~41 kg/s of hot water for domestic use. Furthermore, the highest amount of exergy destruction is observed in biomass combustion unit and the solar PTCs.
اظهر المزيد [+] اقل [-]