خيارات البحث
النتائج 1 - 2 من 2
Impacts of climate change, policy and Water-Energy-Food nexus on hydropower development النص الكامل
2018
Zhang, Xiao | Li, Hong-Yi | Deng, Zhiqun Daniel | Ringler, Claudia | Gao, Yang | Hejazi, Mohamad I. | Leung, L Ruby
Hydropower plays an important role as the global energy system moves towards a less carbon-intensive and sustainable future as promoted under the Sustainable Development Goals (SDGs). This article provides a systematic review of the impacts from policy, climate change and Water-Energy-Food (W-E-F) nexus on hydropower development at global scale. Asia, Africa and Latin America are hotspots promoting hydropower development with capacity expansion, while Europe and North America focus on performance improvement and environment impacts mitigation. Climate change is projected to improve gross hydropower potential (GHP) at high latitude of North Hemisphere and tropical Africa and decrease that in the US, South Africa and south and central Europe. Analysis from W-E-F nexus highlights the importance of integrated approaches as well as cross-sectoral coordination so as to improve resources use efficiency and achieve sustainable hydropower development. These three factors together shape the future of hydropower and need to be considered for planning and operation purpose.
اظهر المزيد [+] اقل [-]Organic carbon content drives methylmercury levels in the water column and in estuarine food webs across latitudes in the Northeast United States النص الكامل
2019
Taylor, V.F. | Buckman, K.L. | Seelen, E.A. | Mazrui, N.M. | Balcom, P.H. | Mason, R.P. | Chen, C.Y.
Estuaries are dynamic ecosystems which vary widely in loading of the contaminant methylmercury (MeHg), and in environmental factors which control MeHg exposure to the estuarine foodweb. Inputs of organic carbon and rates of primary production are important influences on MeHg loading and bioaccumulation, and are predicted to increase with changes in climate and land use pressures. To further understand these influences on MeHg levels in estuarine biota, we used a field study approach in sites across different temperature regions, and with varying organic carbon levels. In paired comparisons of sites with high vs. low organic carbon, fish had lower MeHg bioaccumulation factors (normalized to water concentrations) in high carbon sites, particularly subsites with large coastal wetlands and large variability in dissolved organic carbon levels in the water column. Across sites, MeHg level in the water column was strongly tied to dissolved organic carbon, and was the major driver of MeHg concentrations in fish and invertebrates. Higher primary productivity (chlorophyll-a) was associated with increased MeHg partitioning to suspended particulates, but not to the biota. These findings suggest that increased inputs of MeHg and loss of wetlands associated with climate change and anthropogenic land use pressure will increase MeHg concentrations in estuarine food webs.
اظهر المزيد [+] اقل [-]