خيارات البحث
النتائج 1 - 6 من 6
Naming fungi involved in spoilage of food, drink, and water النص الكامل
2015
Hawksworth, D. L.
Correct identifications are the key to all data on an organism. Fungi cultured or sequenced from a foodstuff may not always be the spoilage agents, and there are potential pit-falls in culturing and molecular identification. Molecular phylogenetics is resulting in major changes in fungal classification, and substantial changes in the rules on naming fungi were agreed in 2011. Different morphs of a single pleomorphic species can no longer have different scientific names, and stability is to be fostered through lists of protected names. The naming of fungi is becoming increasingly fit-for-purpose by taking advantage of the possibilities arising from advances in molecular and digital technologies. A list of the current names of 100 species of spoilage fungi is included.
اظهر المزيد [+] اقل [-]Microbial community structure reveals how microaeration improves fermentation during anaerobic co-digestion of brown water and food waste النص الكامل
2014
Lim, Jun Wei | Chiam, Jun An | Wang, Jing-Yuan
The purpose of this study was to investigate the impact of microaeration on the fermentation process during anaerobic co-digestion of brown water (BW) and food waste (FW). This was achieved by daily monitoring of reactor performance and the determination of its bacterial consortium towards the end of the study. Molecular cloning and sequencing results revealed that bacteria within phyla Firmicutes and Bacteriodetes represented the dominant phylogenetic group. As compared to anaerobic conditions, the fermentation of BW and FW under microaeration conditions gave rise to a significantly more diverse bacterial population and higher proportion of bacterial clones affiliated to the phylum Firmicutes. The acidogenic reactor was therefore able to metabolize a greater variety of substrates leading to higher hydrolysis rates as compared to the anaerobic reactor. Other than enhanced fermentation, microaeration also led to a shift in fermentation production pattern where acetic acid was metabolized for the synthesis of butyric acid.
اظهر المزيد [+] اقل [-]Ecophysiological characterization of common food-borne fungi in relation to pH and water activity under various atmospheric compositions النص الكامل
1998
Haasum, I. | Nielsen, P.V.
The combined effects of pH, water activity (a(w)), oxygen (O2) and carbon dioxide (CO2) levels on growth and sporulation of 10 common food-borne fungi were studied. The use of a multivariate statistical method (PLS) for the analysis of data showed that the fungi could be grouped according to their physiological response to changes in the four tested factors. Carbon dioxide, a(w) and pH were found to be the most significant factors describing differences and similarities among the fungi. Maximal inhibitory effect of elevated levels of CO2 (5-25%) and decreased a(w) (0.99-0.95) varied among the 10 species from 6 to 77% and from 52 to 100%, respectively. Sporulation of the fungi was sensitive to all tested factors. Furthermore, interaction of CO2 and a(w) displayed a significant effect on sporulation. It was shown that different fungal species associated with the same ecosystem responded similarly to changes in the tested factors. Thus, fungi which are not phylogenetically related may be physiologically related or show a common strategy of life.
اظهر المزيد [+] اقل [-]Enteroaggregative Escherichia coli is the predominant diarrheagenic E. coli pathotype among irrigation water and food sources in South Africa النص الكامل
2018
Aijuka, Matthew | Santiago, Araceli E. | Girón, Jorge A. | Nataro, James P. | Buys, Elna M.
Diarrheagenic E. coli (DEC) has been implicated in foodborne outbreaks worldwide and have been associated with childhood stunting in the absence of diarrhoea. Infection is extraordinarily common, but the routes of transmission have not been determined. Therefore, determining the most prevalent pathotypes in food and environmental sources may help provide better guidance to various stakeholders in ensuring food safety and public health and advancing understanding of the epidemiology of enteric disease. We characterized 205 E. coli strains previously isolated from producer distributor bulk milk (PDBM)(118), irrigation water (48), irrigated lettuce (29) and street vendor coleslaw (10) in South Africa. Enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC) and diffusely adherent E. coli (DAEC) were sought. We used PCR and partial gene sequencing for all 205 strains while 46 out of 205 that showed poor resolution were subsequently characterized using cell adherence (HeLa cells).PCR and partial gene sequencing of aatA and/or aaiC genes confirmed EAEC (2%, 5 out of 205) as the only pathotype. Phylogenetic analysis of sequenced EAEC strains with E. coli strains in GenBank showing ≥80% nucleotide sequence similarity based on possession of aaiC and aatA generated distinct clusters of strains separated predominantly based on their source of isolation (food source or human stool) suggesting a potential role of virulence genes in source tracking. EAEC 24%, 11 out of 46 strains (PDBM = 15%, irrigation water = 7%, irrigated lettuce = 2%) was similarly the predominant pathotype followed by strains showing invasiveness to HeLa cells, 4%, 2 out of 46 (PDBM = 2%, irrigated lettuce = 2%), among stains characterized using cell adherence.Therefore, EAEC may be the leading cause of DEC associated food and water-borne enteric infection in South Africa. Additionally, solely using molecular based methods targeting virulence gene determinants may underestimate prevalence, especially among heterogeneous pathogens such as EAEC.
اظهر المزيد [+] اقل [-]Study of microbial community and biodegradation efficiency for single- and two-phase anaerobic co-digestion of brown water and food waste النص الكامل
2013
Lim, J.W. | Chen, C. L. | Ho, I.J.R. | Wang, J.-Y.
The objective of this work was to study the microbial community and reactor performance for the anaerobic co-digestion of brown water and food waste in single- and two-phase continuously stirred tank reactors (CSTRs). Bacterial and archaeal communities were analyzed after 150days of reactor operation. As compared to single-phase CSTR, methane production in two-phase CSTR was found to be 23% higher. This was likely due to greater extent of solubilization and acidification observed in the latter. These findings could be attributed to the predominance of Firmicutes and greater bacterial diversity in two-phase CSTR, and the lack of Firmicutes in single-phase CSTR. Methanosaeta was predominant in both CSTRs and this correlated to low levels of acetate in their effluent. Insights gained from this study would enhance the understanding of microorganisms involved in co-digestion of brown water and food waste as well as the complex biochemical interactions promoting digester stability and performance.
اظهر المزيد [+] اقل [-]Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water and food ingredients النص الكامل
2012
Joseph, Susan | Cetinkaya, Esin | Drahovska, Hana | Levican, Arturo | Figueras, Maria J. | Forsythe, S. J. (Steve J.)
A re-evaluation of the taxonomic position of five strains, one assigned to Cronobacter sakazakii (strain 1330T, isolated from spiced meat purchased in Slovakia), two previously assigned to Cronobacter genomospecies 1 (strains NCTC 9529T and 731, isolated from water and a leg infection, respectively) and two previously assigned to Cronobacter turicensis (strains 96 and 1435, isolated from onion powder and rye flour, respectively) was carried out. The analysis included phenotypic characterization, 16S rRNA gene sequencing and multilocus sequence analysis (MLSA) of seven housekeeping genes (atpD, fusA, glnS, gltB, gyrB, infB, ppsA; 3036 bp). 16S rRNA gene sequence analysis and MLSA showed that strain 1330T formed an independent phylogenetic lineage in the MLSA, with Cronobacter dublinensis LMG 23823T as the closest neighbour. DNA–DNA reassociation and phenotypic analysis revealed that strain 1330T represented a novel species, for which the name Cronobacter condimenti sp. nov. is proposed (type strain 1330T = CECT 7863T = LMG 26250T). Strains NCTC 9529T, 731, 96 and 1435 clustered together within an independent phylogenetic lineage, with C. turicensis LMG 23827T as the closest neighbour in the MLSA. DNA–DNA reassociation and phenotypic analysis confirmed that these strains represent a novel species, for which the name Cronobacter universalis sp. nov. is proposed (type strain NCTC 9529T = CECT 7864T = LMG 26249T).
اظهر المزيد [+] اقل [-]