خيارات البحث
النتائج 1 - 10 من 25
Innovation Issues in Water, Agriculture and Food النص الكامل
2019
Maria do Rosário Cameira | Luís Santos Pereira
The main challenge faced by agriculture is to produce enough food for a continued increase in population, however in the context of ever-growing competition for water and land, climate change, droughts and anthropic water scarcity, and less-participatory water governance. Such a context implies innovative issues in agricultural water management and practices, at both the field and the system or the basin scales, mainly in irrigation to cope with water scarcity, environmental friendliness, and rural society welfare. Therefore, this special issue was set to present and discuss recent achievements in water, agriculture, and food nexus at different scales, thus to promote sustainable development of irrigated agriculture and to develop integrated approaches to water and food. Papers cover various domains including: (a) evapotranspiration and crop water use; (b) improving water management in irrigated agriculture, particularly irrigation scheduling; (c) adaptation of agricultural systems to enhance water use and water productivity to face water scarcity and climate change; (d) improving irrigation systems design and management adopting multi-criteria and risk approaches; (e) ensuring sustainable management for anthropic ecosystems favoring safe and high-quality food production, as well as the conservation of natural ecosystems; (f) assessing the impact of water scarcity and, mainly, droughts; (g) conservation of water quality resources, namely by preventing contamination with nitrates; (h) use of modern mapping technologies and remote sensing information; and (i) fostering a participative and inclusive governance of water for food security and population welfare.
اظهر المزيد [+] اقل [-]Innovation issues in water, agriculture and food النص الكامل
2019
Cameira, Maria | Pereira, L.S.
Editorial | The main challenge faced by agriculture is to produce enough food for a continued increase in population, however in the context of ever-growing competition for water and land, climate change, droughts and anthropic water scarcity, and less-participatory water governance. Such a context implies innovative issues in agricultural water management and practices, at both the field and the system or the basin scales, mainly in irrigation to cope with water scarcity, environmental friendliness, and rural society welfare. Therefore, this special issue was set to present and discuss recent achievements in water, agriculture, and food nexus at di erent scales, thus to promote sustainable development of irrigated agriculture and to develop integrated approaches to water and food. Papers cover various domains including: (a) evapotranspiration and crop water use; (b) improving water management in irrigated agriculture, particularly irrigation scheduling; (c) adaptation of agricultural systems to enhance water use and water productivity to face water scarcity and climate change; (d) improving irrigation systems design and management adopting multi-criteria and risk approaches; (e) ensuring sustainable management for anthropic ecosystems favoring safe and high-quality food production, as well as the conservation of natural ecosystems; (f) assessing the impact of water scarcity and, mainly, droughts; (g) conservation of water quality resources, namely by preventing contamination with nitrates; (h) use of modern mapping technologies and remote sensing information; and (i) fostering a participative and inclusive governance of water for food security and population welfare | info:eu-repo/semantics/publishedVersion
اظهر المزيد [+] اقل [-]Water–water and water–macromolecule interactions in food dehydration and the effects of the pore structures of food on the energetics of the interactions النص الكامل
2012
Wang, J. C. | Liapis, A.I.
A molecular dynamics (MD) modeling and simulations approach has been rationally built and developed to study porous food systems constructed with amylose and dextran chains. The findings from our MD studies indicate that the presence of food macromolecules decreases the energetics of the water–water interactions for the nearby water molecules in the pore space, but provides additional water–macromolecule interactions that can significantly outweigh the partial loss of water–water interactions to make the adjacent water molecules strongly bound to the food macromolecules so that the water activity and water removal rate are decreased as dehydration proceeds and, thus, the dehydration energy requirement would be increased. The effects of pore structures are greater in systems with higher densities of food macromolecules, smaller in size pores, and stronger water–macromolecule interactions. Dehydration of food materials can thus be reasonably expected to start from the largest pores and from the middle of the pores, and to have non-uniform water removal rates and non-planar water–vapor interfaces inside individual pores as well as across sections of the food materials. The food porous structures are found to have good pore connectivity for water molecules. As dehydration proceeds, water content and the support from water–water and water–macromolecule interactions both decrease, causing the food porous structures to adopt more compact conformations and their main body to decrease in size. Dehydration in general also reduces pore sizes and the number of pore openings, increases the water–macromolecule interactions, and leads to the reduction of the overall thermal conductivity of the system, so that more energy (heat), longer times, and/or greater temperature gradients are needed in order to further dehydrate the porous materials. Our thermodynamic analysis also shows that the average minimum entropy requirement for food dehydration is greater when the water–macromolecule interactions are stronger and the food macromolecular density is higher. The importance of the physicochemical affinity of food molecules for water and of the compatibility of the resultant porous structures with water configurational structures in determining food properties and food processing through the water–macromolecule interactions, is clearly and fundamentally verified by the results and discussion presented in this work.
اظهر المزيد [+] اقل [-]Simulation model for solar water heating for food processing النص الكامل
2000
Wojcicka-Migasiuk, D. | Chochowski, A.
Water for food as food for thought: case study of applying the PODIUMSim model to Uzbekistan النص الكامل
2009
Yakubov, Murat | Manthrithilake, Herath
Uzbekistan, being historically one of the most populated and agriculture-based republics in the former Soviet Union, still features quite high annual population growth rates and great dependence on agriculture as a backbone for the rest of the economic reforms. With water playing an extremely important role in producing a sufficient food base for the country's growing population and earning much needed foreign exchange for the government to ensure overall economic development, the pressures on this scarce resource will obviously and inevitably grow, putting it much at risk over a long-term perspective. So would available water be enough to meet ever-increasing demands from major economic uses in the foreseeable future, and what can be the options for meeting such demands - these are the key questions raised and researched in this article. As such the research concentrates on the two major country-specific scenarios with water and its multiple uses for Uzbekistan - the business as usual and the best case. Both scenarios discuss possible future implications for the next quarter-century given certain assumptions. Finally when summarizing the findings, the paper provides conclusions and recommendations as to how the model and further scenarios can be better optimized given the trans-boundary nature of most water resources in Central Asia where Uzbekistan geographically belongs.
اظهر المزيد [+] اقل [-]A Bibliometric Analysis of Food–Energy–Water Nexus: Progress and Prospects النص الكامل
2020
Zhu, Jing | Kang, Shenghong | Zhao, Wenwu | Li, Qiujie | Xie, Xinyuan | Hu, Xiangping
Food, energy and water are important basic resources that affect the sustainable development of a region. The influence of food–energy–water (FEW) nexus on sustainable development has quickly become a frontier topic since the Sustainable Development Goals (SDGs) were put forward. However, the overall context and core issues of the FEW nexus contributions to SDGs are still unclear. Using co-citation analysis, this paper aims to map the knowledge domains of FEW nexus research, disentangles its evolutionary context, and analyzes the core issues in its research, especially the progress of using quantitative simulation models to study the FEW nexus. We found that (1) studies within the FEW nexus focused on these following topics: correlation mechanisms, influencing factors, resource footprints, and sustainability management policies; (2) frontier of FEW studies have evolved from silo-oriented perspective on single resource system to nexus-oriented perspective on multiple systems; (3) quantitative research on the FEW nexus was primarily based on spatiotemporal evolution analysis, input–output analysis and scenario analysis; (4) the resource relationship among different sectors was synergies and tradeoffs within a region. In general, current research still focuses on empirical data, mostly qualitative and semiquantitative analyses, and there is a lack of research that can systematically reflect the temporal and spatial contribution of the FEW nexus to multiple SDGs. We believe that future research should focus more on how FEW nexus can provide mechanistic tools for achieving sustainable development.
اظهر المزيد [+] اقل [-]Water–Energy–Food Nexus Simulation: An Optimization Approach for Resource Security النص الكامل
2019
Wicaksono, Albert | Jeong, Gimoon | Kang, Doosun
The water–energy–food nexus (WEF nexus) concept is a novel approach to manage limited resources. Since 2011, a number of studies were conducted to develop computer simulation models quantifying the interlinkage among water, energy, and food sectors. Advancing a nationwide WEF nexus simulation model (WEFSiM) previously developed by the authors, this study proposes an optimization module (WEFSiM-opt) to assist stakeholders in making informed decisions concerning sustainable resource management. Both single- and multi-objective optimization modules were developed to maximize the user reliability index (URI) for water, energy, and food sectors by optimizing the priority index and water allocation decisions. In this study, the developed models were implemented in Korea to determine optimal resource allocation and management decisions under a plausible drought scenario. This study suggests that the optimization approach can advance WEF nexus simulation and provide better solutions for managing limited resources. It is anticipated that the proposed WEFSiM-opt can be utilized as a decision support tool for designing resource management plans.
اظهر المزيد [+] اقل [-]Modeling water management and food security in India under climate change النص الكامل
2014
Islam, A. | Shirsath, P. B. | Kumar, S. N. | Subash, N. | Sikka, A. K. | Aggarwal, Pramod Kumar
Climate change and variability will impact water availability and the food security of India. Trend analyses of historical data indicate an increase in temperature and changes in rainfall pattern in different parts of the country. The general circulation models (GCMs) also project increased warming and changes in precipitation patterns over India. This chapter presents examples of model applications in water management and crop yield simulation in India, focusing on climate change impact assessment. Simulation models have been successfully applied for rotational water allocation, deficit irrigation scheduling, etc. in different canal commands. Application of a universal soil loss equation in a distributed parametric modeling approach by partitioning watershed into erosion response units suggests that by treating only 14% of the watershed area, a 47% reduction in soil loss can be achieved. Simulation studies conducted using different hydrological models with different climate change projections and downscaling approaches showed varied hydrological responses of different river basins to the future climate change scenarios, depending on the hydrological model, climate change scenarios, and downscaling approaches used. Crop yield modeling showed decreases in irrigated and rainfed rice (Oryza sativa L.) yields under the future climate change scenarios, but the decrease is marginal for rainfed rice. Maize (Zea mays L.) yields in monsoon may be adversely affected by a rise in atmospheric temperature, but increased rain can partly offset those losses. Wheat (Triticum aestivum L.) yields are likely to be reduced by 6 to 23% and 15 to 25% during the 2050s and 2080s, respectively. A combined bottom-up participatory process and top-down integrated modeling tool could provide valuable information for locally relevant climate change adaptation planning.
اظهر المزيد [+] اقل [-]Podium: Projecting water supply and demand for food production in 2025
2000
Fraiture, Charlotte de | Molden, David J. | Amarasinghe, Upali A. | Makin, Ian W.
Present state and prospects of international research activities for food and water issues
2005
Takahashi, J. (National Inst. for Rural Engineering, Tsukuba, Ibaraki (Japan)) | Katsuyama, T. | Tsujimoto, K. | Yasunaka, M.