خيارات البحث
النتائج 1 - 2 من 2
Properties of spray-dried food flavours microencapsulated with two-layered membranes: Roles of interfacial interactions and water النص الكامل
2012
Gharsallaoui, Adem | Roudaut, Gaëlle | Beney, Laurent | Chambin, Odile | Voilley, Andrée | Saurel, Rémi
Engineering the interface of oil-in-water emulsion droplets with biopolymers that modify its permeability could provide a novel technique to improve flavour retention in dry powders. The objective of this study was to determine if volatile compounds were more retained in dry emulsions stabilized by pea protein isolate (PPI)/pectin complex than that stabilized by PPI alone. The retention of ethyl esters during spray-drying increased with decreasing volatility of the encapsulated compound and ranged from 28% to 40%. The addition of pectin to feed emulsions was quite effective in markedly improving the retention of the three studied flavour compounds. In our previous work (Gharsallaoui et al., 2010), we showed that pectin was able to improve physical integrity of emulsion oil droplets during spray-drying. However, the pectin positive effect on both the droplet stability and the flavour retention at the time of spray-drying can also be explained by a protein molecular structure protective effect. Indeed, the obtained FTIR results showed that pectin was able to preserve the β-sheet secondary structure of pea protein when pea globulins/pectin complexes are heated. The study of the release characteristics of a flavour compound from dried powders showed that pectin addition did not affect the release profile mainly accomplished by the diffusion mechanism.
اظهر المزيد [+] اقل [-]Self-Assembled Egg Yolk Peptide Micellar Nanoparticles as a Versatile Emulsifier for Food-Grade Oil-in-Water Pickering Nanoemulsions النص الكامل
2019
Du, Zhenya | Li, Qing | Li, Junguang | Su, Enyi | Liu, Xiao | Wan, Zhili | Yang, Xiaoquan
Pickering emulsions stabilized by food-grade particles have garnered increasing interest in recent years due to their promising applications in biorelated fields such as foods, cosmetics, and drug delivery. However, it remains a big challenge to formulate nanoscale Pickering emulsions from these edible particles. Herein we show that a new Pickering nanoemulsion that is stable, monodisperse, and controllable can be produced by employing the spherical micellar nanoparticles (EYPNs), self-assembled from the food-derived, amphiphilic egg yolk peptides, as an edible particulate emulsifier. As natural peptide-based nanoparticles, the EYPNs have a small particle size, intermediate wettability, high surface activity, and deformability at the interface, which enable the formation of stable Pickering nanodroplets with a mean dynamic light scattering diameter below 200 nm and a polydispersity index below 0.2. This nanoparticle system is versatile for different oil phases with various polarities and demonstrates the easy control of nanodroplet size through tuning the microfluidization conditions or the ratio of EYPNs to oil phase. These food-grade Pickering nanoemulsions, obtained when the internal phase is an edible vegetable oil, have superior stability during long-term storage and spray-drying based on the irreversible and compact adsorption of intact EYPNs at the nanodroplet surface. This is the first finding of a natural edible nano-Pickering emulsifier that can be used solely to make stable food Pickering nanoemulsions with the qualities of simplicity, versatility, low cost, and the possibility of controllable and mass production, which make them viable for many sustainable applications.
اظهر المزيد [+] اقل [-]