خيارات البحث
النتائج 1 - 10 من 10
An assessment of India's virtual water trade in major food products النص الكامل
2021
Shivaswamy, G P | Kallega, Harish Kumar | Anuja, A R | Singh, K. N.
This paper analyzes virtual water trade flows through food products between India and its trading partners. It relies on the gravity model of trade and estimates a panel data fixed effect regression to identify drivers of virtual water trade. Our results show that India was the net exporter of virtual water in food products during 1990–2013; however later it turned out to be its net importer. Further our analysis shows distance between trading partners as the primary driver of virtual water trade. India prefers trading with its neighbours to reduce transportation costs. The availability of arable land and water used in crop production are limiting factors for production of food crops and thus act as essential factors in deciding the virtual water trade flows. These findings indicate that resource endowment factors influence bilateral virtual water trade flows.
اظهر المزيد [+] اقل [-]Receipts of food by rail and water in Providence, Rhode Island
1927
Corbett, Roger B. (Roger Bailey)
Interlinkage between water-energy-food for oil palm cultivation in Thailand النص الكامل
2020
Jaroenkietkajorn, Ukrit | Gheewala, Shabbir H.
Biofuels for use in on-road transportation have been promoted in Thailand over the past decade to reduce dependence on imported fossil resources as well as possibly reducing greenhouse gas emissions. This has led to an increase in production of biodiesel which is produced from palm oil. However, as palm oil is also used for food, it is important to take this into consideration as well. Also, oil palm cultivation is rather water-intensive. Hence, it is necessary to analyze the interlinkage between water, food, and energy to have a holistic understanding and prevent trade-offs when addressing one issue in isolation. The water-energy-food nexus for oil palm cultivation in Thailand has been conducted following two widely used methods, the Water-Food-Energy Nexus (WFEN) and Water-Energy-Food (WEF) nexus assessment method. The results are demonstrated as a single score, which is easier for suggesting a suitable area for oil palm plantation. The assessment indicates the southern region of Thailand is the most suitable for oil palm plantation. The recommendation is consistent with the suggestion of the government, based on land and climate suitability. However, this study considers more comprehensive aspects including various other environmental aspects. Oil palm cultivation mainly relates to the amount of freshwater consumption, leading to the increment of fuel consumption for pumping water. On the other hand, the effectiveness of fresh fruit bunch yield (for food and energy production) should be developed in the future. Besides, the results recommend the central region for the expansion of oil palm cultivation in the future because of the availability of a good irrigation infrastructure.
اظهر المزيد [+] اقل [-]Enabling Water-Energy–Food Nexus: A New Approach for Sustainable Agriculture and Food Security in Mountainous Landlocked Countries النص الكامل
2016
Gurung, Tek Bahadur
Majority of landlocked mountainous countries are poorly ranked in Human Development Index (HDI), mostly due to poor per capita agriculture production, increasing population, unemployment, expensive and delayed transportation including several other factors. Generally, economy of such countries substantially relies on subsistence agriculture, tourism, hydropower and largely on remittance etc. Recently, it has been argued that to utilize scarce suitable land efficiently for food production, poor inland transport, hydropower, irrigation, drinking water in integration with other developmental infrastructures, an overarching policy linking water - energy – food nexus within a country for combating water, energy and food security would be most relevant. Thus, in present paper it has been opined that promotion of such linkage via nexus approach is the key to sustainable development of landlocked mountainous countries. Major land mass in mountainous countries like Nepal remains unsuitable for agriculture, road and other infrastructure profoundly imposing food, nutrition and energy security. However, large pristine snowy mountains function as wildlife sanctuaries, pastures, watershed, recharge areas for regional and global water, food and energy security. In return, landlocked mountainous countries are offered certain international leverages. For more judicious trade off, it is recommended that specific countries aerial coverage of mountains would be more appropriate basis for such leverages. Moreover, for sustainability of mountainous countries an integrated approach enabling water - energy – food nexus via watershed-hydropower-irrigation-aquaculture-agriculture-integrated linking policy model is proposed. This model would enable protection of watershed for pico, micro, and mega hydro power plants and tail waters to be used for aquaculture or irrigation or drinking water purposes for food and nutrition security.
اظهر المزيد [+] اقل [-]African American Women's Perceptions on Access to Food and Water in Flint, Michigan النص الكامل
2017
Mayfield, Kellie E. | Carolan, Marsha | Weatherspoon, Lorraine | Chung, Kimberly R. | Hoerr, Sharon M.
To explore the perceptions of food access by African American women in Flint, MI.Using womanist theory, in which African American women's experiential knowledge centered the analysis, 8 focus groups were conducted during fall/spring, 2014–2015. Seventeen mothers aged 21–50 years with children aged <18 years and 13 women aged >60 years comprised the groups.The high cost of water, poor availability of healthy foods in inner-city stores, and limited transportation were barriers to accessing healthy food. Conversely, receiving food from food giveaways, friends, and family, as well as access to transportation facilitated food access. These women also reported discriminatory experiences and diet-related health concerns. Participants were keenly aware of available free community resources and gender, racial, and income barriers to accessing them.Understanding these barriers and facilitators provides information to aid local food policy assistance decisions and inform community-based interventions, especially given the lead contamination of water and the purported importance of a healthy diet to sequester lead.
اظهر المزيد [+] اقل [-]Trade-offs and synergies in the water-energy-food nexus: The case of Saskatchewan, Canada النص الكامل
2021
Wu, Linuo | Elshorbagy, Amin | Pande, Saket | Zhuo, La
Socioeconomic and climatic changes and limited water resources pose various challenges to water, energy, and food sectors across the globe. The inevitable interactions between water, energy, and food systems bring about trade-offs but also synergies under different decisions and policies. To gain insights into these issues, we developed a water-energy-food (WEF) nexus model that incorporates both production (supply) and demands sides of WEF systems into a single system-of-systems model using the system dynamics (SD) approach. The model is applied to Saskatchewan, Canada, and so is named WEF-Sask. The model results reveal the various levels of sensitivities of water, energy, and food (and feed) sectors to the socioeconomic and climatic drivers. The analysis of trade-offs and synergies shows that the proposed large irrigation expansion (400%) boosts food production by 1.6% while reducing hydropower production by 2.7% in Saskatchewan. Wind energy expansion strategy (from 5% to 30% of total capacity) makes synergies that not only contribute to electricity supply but also reduce greenhouse gas emissions, industrial water demand, and groundwater use by 2.0, 5.7, and 3.8%, respectively. Biofuel use (blending mandate: 10% ethanol and 5% biodiesel) in transportation cuts GHG emissions by 1.2% but reduces the potential food export (food surplus) by 5.0%. The WEF-Sask model allows for scenario analysis toward integrated resources management, and its generic model structure can be expanded to other regions.
اظهر المزيد [+] اقل [-]A framework for assessing food-energy-water security: A FEW case studies from rural Alaska النص الكامل
2022
Schmidt, Jennifer I. | Johnson, Barbara | Huntington, Henry P. | Whitney, Erin
Food, energy, and water (FEW) are basic needs for well-being and quality of life. Assessing FEW security allows residents, communities, and policy makers to make informed decisions about how to sustain and improve well-being. We have developed a FEW security assessment framework that examines four components of security: availability, access, quality, and preference. With the help of local community members, we interviewed 114 households in three rural Alaska communities to assess FEW security, drivers and outcomes of FEW security, and potential interactions among FEW components and with renewable energy (RE) developments. While FEW security was high overall, preference and quality, especially for food, was lower. Food harvested from the local environment (i.e. subsistence) was necessary to include in security assessments given that 24% of participants reported insecurity when asked about contemporary sources (i.e. purchased) versus 5% reporting insecurity for subsistence food sources (i.e., harvested). The major influences on FEW security tended to originate from outside the community, including factors such as transportation, income, fuel prices, and weather. One internal factor, health, was both a driver and an outcome of FEW security. Satisfaction with RE varied (42%–68%) with dissatisfaction due to unreliability, uncertainty of the economic benefit, desire for other types of RE, or wanting more RE (n = 6). Communication about RE projects was key to managing expectations, promoting knowledge, and identifying benefits for residents. Participants did not identify linkages between RE and FEW security. Our assessment tool can be used by communities and policy makers to contextualize FEW security into more insightful and specific components, allowing for identification of attainable actions to improve FEW security and thus individual and community well-being.
اظهر المزيد [+] اقل [-]Transforming the food-water-energy-land-economic nexus of plasticulture production through compact bed geometries النص الكامل
2017
Holt, Nathan | Shukla, S. | Hochmuth, George | Muñoz Carpena, Rafael | Ozores-Hampton, Monica
Raised-bed plasticulture, an intensive production system used around the world for growing high-value crops (e.g., fresh market vegetables), faces a water-food nexus that is actually a food-water-energy-land-economic nexus. Plasticulture represents a multibillion dollar facet of the United States crop production value annually and must become more efficient to be able to produce more on less land, reduce water demands, decrease impacts on surrounding environments, and be economically-competitive. Taller and narrower futuristic beds were designed with the goal of making plasticulture more sustainable by reducing input requirements and associated wastes (e.g., water, nutrients, pesticides, costs, plastics, energy), facilitating usage of modern technologies (e.g., drip-based fumigation), improving adaptability to a changing climate (e.g., flood protection), and increasing yield per unit area.Compact low-input beds were analyzed against conventional beds for the plasticulture production of tomato (Solanum lycopersicum), an economically-important crop, using a systems approach involving field measurements, vadose-zone modeling (HYDRUS), and production analysis. Three compact bed geometries, 61cm (width)× 25cm (height), 45cm× 30cm, 41cm× 30cm, were designed and evaluated against a conventional 76cm× 20cm bed. A two-season field study was conducted for tomato in the ecologically-sensitive and productive Everglades region of Florida. Compact beds did not statistically impact yield and were found to reduce: 1) production costs by $150–$450/ha; 2) leaching losses by up to 5% (1cm/ha water, 0.33kg/ha total nitrogen, 0.05kg/ha total phosphorus); 3) fumigant by up to 47% (48kg/ha); 4) plasticulture's carbon footprint by up to 10% (1711kg CO2-eq/ha) and plastic waste stream by up to 13% (27kg/ha); 5) flood risks and disease pressure by increasing field's soil water storage capacity by up to 33% (≈1cm); and 6) field runoff by 0.48–1.40cm (51–76%) based on HYDRUS model simulations of 10-year, 2-h storm events in other major tomato production regions of California and Virginia.Re-designing the bed geometries in plasticulture production systems to be more compact is an example of win-win production optimization not only for traditional farms in rural areas but also for urban and peri-urban farms which are located closer to city centers. Compact beds could enable more plants per unit area, thus requiring less land area for the same production. Needing less area facilitates urban and peri-urban farming where land values can be high. Urban and peri-urban farming has several benefits, including reductions in transportation energy as production is closer to market and the ability for city wastewater to be reused for irrigation instead of freshwater withdrawals. Compact beds allow plasticulture to have smaller water, chemical, energy, carbon, waste, and economic footprints without impacting production. Improving agricultural systems in this way could enhance economic and environmental viability, which is essential for a sustainable food-water-energy-land-economic nexus.
اظهر المزيد [+] اقل [-]Modelling the diffusion and operation of anaerobic digestions in Great Britain under future scenarios within the scope of water-energy-food nexus النص الكامل
2020
Abdel-Aal, Mohamad | Haltas, Ismail | Varga, Liz
The paper aims to understand the impacts of the spatial and temporal diffusion of Anaerobic Digestion (AD) on the Water Energy Food (WEF) nexus and to quantify the associated environmental, social and economic benefits. Contemporary tight carbon reduction targets urge the need to deploy renewable energy technologies however due to interdependencies across the WEF nexus, various technologies are beneficial for some but not all sectors. This paper quantifies the impacts of future possible AD technology diffusion choices on the environment, society and economy. This can aid decision makers to identify the potential consequences of various AD alternatives within the next three decades. The study considers an integrated WEF nexus approach and accounts for the interdependencies within the nexus. This was done by developing an Agent-Based Model (ABM) and simulating the relations between the main players within the nexus, thus examining the upscaling of AD diffusion and its consequences for water consumption, energy production, transportation, landfill use, food waste processing and digestate generation. Three future WEF nexus scenarios, that reflect potential alternatives of society and technology in Great Britain up to 2050, were utilised by the ABM implementation to test the sensitivity of AD diffusion choices. These scenarios describe possible changes to lifestyle, governance, technologies, climate, and social structures. Accounting for the uncertainty associated with such future simulations, the Monte Carlo method was employed to estimate the potential variations in scenario outputs. Results suggest that decentralisation results in the largest carbon reduction, but can incur more costs. Centralisation consumes 35% more water but produces 37% more energy (biogas). The paper has visualised the scenario outputs graphically to highlight the consequences of neglecting the inter-relationships between environmental, social and economic aspects of AD.
اظهر المزيد [+] اقل [-]Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested النص الكامل
2018
Chen, Lian | Zhou, Shenglu | Shi, Yaxing | Wang, Chunhui | Li, Baojie | Li, Yan | Wu, Shaohua
Environmental pollution by heavy metals resulting from rapid economic development is a major concern. Soil, water, wheat, and rice samples were collected from the Lihe River Watershed in the Taihu Region (east China). In this study area, many types of industrial plants, including ceramics factories, plants working with refractory materials, and chemical plants are densely distributed and cause serious heavy metal pollution. In addition, well-developed transportation and agricultural activities are also important sources of heavy metals. Thus, the concentrations of selected heavy metals including cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in the samples were analyzed to evaluate their potential integral risk (IR) to the health of the local population. Accordingly, the spatial distribution pattern of the IR values was determined in the study. The soil in the study area showed heavy Cd pollution, whereas the pollution by other elements was relatively slight. When the proportions of grain samples in which the concentrations exceeded the tolerance limits were examined, the grains were primarily contaminated with Pb, Ni, Cd, and Zn; and less contaminated with Cu and Cr. The drinking water of the local inhabitants was safe. The average IR value was 3.53 for adults and 3.91 for children, indicating that both adults and children may experience adverse health effects. The spatial distribution pattern of the IR values among the exposed populations in the study area showed high values in the eastern and middle parts, with maximum values >5, and low values in the western part, with minimum values <2. This is consistent with the distributions of the industries and the population. The study may provide a basis for comparison to other regions both in China and worldwide.
اظهر المزيد [+] اقل [-]