خيارات البحث
النتائج 1 - 3 من 3
The food-water quality nexus in periurban aquacultures downstream of Bangkok, Thailand النص الكامل
2019
Mrozik, Wojciech | Vinitnantharat, Soydoa | Thongsamer, Thunchanok | Pansuk, Nipapun | Pattanachan, Pavinee | Thayanukul, Parinda | Acharya, Kishor | Baluja, Marcos Quintela | Hazlerigg, Charles | Robson, Aidan F. | Davenport, Russell J. | Werner, David
Peri-urban aquacultures produce nutritious food in proximity to markets, but poor surface water quality in rapidly expanding megacities threatens their success in emerging economies. Our study compared, for a wide range of parameters, water quality downstream of Bangkok with aquaculture regulations and standards. For parameters not meeting those requirements, we sought to establish whether aquaculture practice or external factors were responsible. We applied conventional and advanced methods, including micropollutant analysis, genetic markers, and 16S rRNA amplicon sequencing, to investigate three family-owned aquacultures spanning extensive, semi-intensive and intensive practices. Canals draining the city of Bangkok did not meet quality standards for water to be used in aquaculture, and were sources for faecal coliforms, Bacteriodes, Prevotella, Human E. coli, tetracycline resistance genes, and nitrogen into the aquaculture ponds. Because of these inputs, aquacultures suffered algae blooms, with and without fertilizer and feed addition to the ponds. The aquacultures were sources of salinity and the herbicide diuron into the canals. Diuron was detectable in shrimp, but not at a level of concern to human health. Given the extent and nature of pollution, peri-urban water policy should prioritize charging for urban wastewater treatment over water fees for small-scale agricultural users. The extensive aquaculture attenuated per year an estimated twenty population equivalents of nitrogen pollution and trillions of faecal coliform bacteria inputs from the canal. Extensive aquacultures could thus contribute to peri-urban blue-green infrastructures providing ecosystem services to the urban population such as flood risk management, food production and water pollution attenuation.
اظهر المزيد [+] اقل [-]Urbanisation and emerging economies: Issues and potential solutions for water and food security النص الكامل
2020
Kookana, Rai S. | Drechsel, Pay | Jamwal, Priyanka | Vanderzalm, Joanne
Urbanisation will be one of the 21st century's most transformative trends. By 2050, it will increase from 55% to 68%, more than doubling the urban population in South Asia and Sub-Saharan Africa. Urbanisation has multifarious (positive as well as negative) impacts on the wellbeing of humans and the environment. The 17 UN Sustainable Development Goals (SDGs) form the blueprint to achieve a sustainable future for all. Clean Water and Sanitation is a specific goal (SDG 6) within the suite of 17 interconnected goals. Here we provide an overview of some of the challenges that urbanisation poses in relation to SDG 6, especially in developing economies. Worldwide, several cities are on the verge of water crisis. Water distribution to informal settlements or slums in megacities (e.g. >50% population in the megacities of India) is essentially non-existent and limits access to adequate safe water supply. Besides due to poor sewer connectivity in the emerging economies, there is a heavy reliance on septic tanks, and other on-site sanitation (OSS) system and by 2030, 4.9 billion people are expected to rely on OSS. About 62–93% of the urban population in Vietnam, Sri Lanka, the Philippines and Indonesia rely on septic tanks, where septage treatment is rare. Globally, over 80% of wastewater is released to the environment without adequate treatment. About 11% of all irrigated croplands is irrigated with such untreated or poorly treated wastewater. In addition to acute and chronic health effects, this also results in significant pollution of often-limited surface and groundwater resources in Sub-Saharan Africa and Asia. Direct and indirect water reuse plays a key role in global water and food security. Here we offer several suggestions to mitigate water and food insecurity in emerging economies.
اظهر المزيد [+] اقل [-]A probabilistic model of gastroenteritis risks associated with consumption of street food salads in Kumasi, Ghana: Evaluation of methods to estimate pathogen dose from water, produce or food quality النص الكامل
2014
Barker, S Fiona | Amoah, Philip | Drechsel, Pay
With a rapidly growing urban population in Kumasi, Ghana, the consumption of street food is increasing. Raw salads, which often accompany street food dishes, are typically composed of perishable vegetables that are grown in close proximity to the city using poor quality water for irrigation. This study assessed the risk of gastroenteritis illness (caused by rotavirus, norovirus and Ascaris lumbricoides) associated with the consumption of street food salads using Quantitative Microbial Risk Assessment (QMRA). Three different risk assessment models were constructed, based on availability of microbial concentrations: 1) Water — starting from irrigation water quality, 2) Produce — starting from the quality of produce at market, and 3) Street — using microbial quality of street food salad. In the absence of viral concentrations, published ratios between faecal coliforms and viruses were used to estimate the quality of water, produce and salad, and annual disease burdens were determined. Rotavirus dominated the estimates of annual disease burden (~10−3Disability Adjusted Life Years per person per year (DALYs pppy)), although norovirus also exceeded the 10−4DALY threshold for both Produce and Street models. The Water model ignored other on-farm and post-harvest sources of contamination and consistently produced lower estimates of risk; it likely underestimates disease burden and therefore is not recommended. Required log reductions of up to 5.3 (95th percentile) for rotavirus were estimated for the Street model, demonstrating that significant interventions are required to protect the health and safety of street food consumers in Kumasi. Estimates of virus concentrations were a significant source of model uncertainty and more data on pathogen concentrations is needed to refine QMRA estimates of disease burden.
اظهر المزيد [+] اقل [-]