خيارات البحث
النتائج 1 - 9 من 9
Oil-in-water food emulsions stabilized by tuna proteins | Emulsiones alimentarias aceite-en-agua estabilizadas con proteínas de atún النص الكامل
2010
Ruiz Márquez, D., Universidad de Huelva (España). Facultad de Ciencias Experimentales | Partal, P., Universidad de Huelva (España). Facultad de Ciencias Experimentales | Franco, J.M., Universidad de Huelva (España). Facultad de Ciencias Experimentales | Gallegos, C., Universidad de Huelva (España). Facultad de Ciencias Experimentales
El presente trabajo se ha centrado en el desarrollo de emulsiones alimentarias aceite-en-agua estabilizadas con proteínas de atún. Específicamente, se ha analizado la influencia del método de conservación de las proteínas aisladas (liofilización, congelación) y de las condiciones de procesado seleccionadas sobre el comportamiento reológico y la microestructura de dichas emulsiones. Se han preparado emulsiones aceite en agua (con un contenido del 70% en peso de aceite) estabilizadas con proteínas de atún. La concentración de emulsionante usada ha sido 0,50% en peso. El comportamiento reológico de estas emulsiones no depende significativamente del método de conservación de la proteína empleado. Por otra parte, un aumento de la velocidad de agitación durante el proceso de manufactura de la emulsión da lugar a una disminución continua del tamaño medio de gota y a un aumento de las funciones viscoelásticas dinámicas, menos significativo a medida que aumenta dicha velocidad de agitación. | This work is focused on the development of o/w salad dressing-type emulsions stabilized by tuna proteins. The influence of protein conservation methods after the extraction process (freezing or liofilization) on the rheological properties and microstructure of these emulsions was analyzed. Processing variables during emulsification were also evaluated. Stable emulsions with adequate rheological and microstructural characteristics were prepared using 70% oil and 0.50% tuna proteins. From the experimental results obtained, we may conclude that emulsion rheological properties are not significantly affected by the protein conservation method selected. On the contrary, an increase in homogenization speed favours an increase in the values of the linear viscoelastic functions. Less significant is the fact that as agitation speed increases further, mean droplet size steadily decreases.
اظهر المزيد [+] اقل [-]Oil-in-water food emulsions stabilized by tuna proteins النص الكامل
2010
D. Ruiz-Márquez | P. Partal | J. M. Franco | C. Gallegos
This work is focused on the development of o/w salad dressing-type emulsions stabilized by tuna proteins. The influence of protein conservation methods after the extraction process (freezing or liofilization) on the rheological properties and microstructure of these emulsions was analyzed. Processing variables during emulsification were also evaluated. Stable emulsions with adequate rheological and microstructural characteristics were prepared using 70% oil and 0.50% tuna proteins. From the experimental results obtained, we may conclude that emulsion rheological properties are not significantly affected by the protein conservation method selected. On the contrary, an increase in homogenization speed favours an increase in the values of the linear viscoelastic functions. Less significant is the fact that as agitation speed increases further, mean droplet size steadily decreases.
اظهر المزيد [+] اقل [-]Linear viscoelastic behaviour of oil-in-water food emulsions stabilised by tuna-protein isolates النص الكامل
2013
Ruiz-Márquez, D | Partal, P | Franco, JM | Gallegos, C
This work deals with the manufacture of oil-in-water food emulsions stabilised by tuna proteins. The influence of protein and oil concentrations on the linear viscoelastic properties and microstructure of these emulsions was analysed. Stable emulsions with suitable linear viscoelastic response and microstructural characteristics were formulated with 70 wt.% oil and, at least, 0.25 wt.% tuna protein. Similarly, emulsions with oil concentrations between 45 and 70 wt.% were prepared using 0.50 wt.% protein. All these emulsions showed a predominantly elastic response in the linear viscoelastic region and a well-developed plateau region in its mechanical spectrum. Rheological and droplet size distribution results pointed out an extensive droplet flocculation, due to interactions among emulsifier molecules located at the oil–water interface of adjacent droplets. As a result, the linear viscoelastic behaviour was controlled by protein–protein interactions, allowing the use of the plateau modulus to successfully normalise both the storage and loss moduli as a function of frequency onto a master curve, irrespective of the selected emulsion formulation.
اظهر المزيد [+] اقل [-]Food grade microemulsion systems: Sunflower oil/castor oil derivative-ethanol/water. rheological and physicochemical analysis النص الكامل
2018
Mori Cortés, Noelia | Lorenzo, Gabriel | Califano, Alicia Noemi
Microemulsions are thermodynamically stable systems that have attracted considerable attention in the food industry as delivery systems for many hydrophobic nutrients. These spontaneous systems are highly dependent on ingredients and composition. In this work phase diagrams were constructed using two surfactants (Kolliphor RH40 and ELP), water, sunflower oil, and ethanol as cosurfactant, evaluating their physicochemical properties. Stability of the systems was studied at 25 and 60 °C, monitoring turbidity at 550 nm for over a month to identify the microemulsion region. Conductivity was measured to classify between water-in-oil and oil-in-water microemulsions. The phase diagram constructed with Kolliphor RH40 exhibited a larger microemulsion area than that formulated with Kolliphor ELP. All formulations showed a monomodal droplet size distribution with low polydispersity index (<0.30) and a mean droplet size below 20 nm. Systems with higher water content presented a Newtonian behavior; increasing the dispersed phase content produced a weak gel-like structure with pseudoplastic behavior under flow conditions that was satisfactorily modeled to obtain structural parameters. | Fil: Mori Cortés, Noelia. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina | Fil: Lorenzo, Gabriel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina | Fil: Califano, Alicia Noemi. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina
اظهر المزيد [+] اقل [-]Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients النص الكامل
2020
Mao, Like | Lu, Yao | Cui, Mengnan | Miao, Song | Gao, Yanxiang
Gels are viscoelastic systems built up with a liquid phase entrapped in a three-dimensional network, which can behave as carriers for bioactive food ingredients. Many attempts have been made to design gel structures in the water phase (hydrogels, emulsion gels, bigels) or oil phase (organogels, bigels) in order to improve their delivery performances. Hydrogels are originated from proteins or polysaccharides, which are suitable for the delivery of hydrophilic ingredients. Organogels are mainly built up with the self-assembling of gelator molecules in the oil phase, and they offer good carriers for lipophilic ingredients. Emulsion gels and bigels, containing both aqueous and oil domains, can provide accommodations for lipophilic and hydrophilic ingredients simultaneously. Gel structures (e.g. rheology, texture, water holding capacity, swelling ratio) can be modulated by choosing different gelators, modifying gelation techniques, and the involvement of other ingredients (e.g. oils, emulsifiers, minerals, acids), which then alter the diffusion and release of the bioactive ingredients incorporated. Various studies have proved that gel-based delivery systems are able to improve the stability and bioavailability of many bioactive food ingredients. This review provides a state-to-art overview of different gel-based delivery systems, highlighting the significance of structure–functionality relationship, to provide advanced knowledge for the design of novel functional foods.
اظهر المزيد [+] اقل [-]Fat mimetic capacity of Chlorella vulgaris biomass in oil-in-water food emulsions stabilized by pea protein
2005
Raymundo, A. | Gouveia, L. | Batista, A.P. | Empis, J. | Sousa, I.
Vegetable proteins proved to be good emulsifiers for food emulsions with dietetic advantages. The use of these emulsions as carriers for healthy ingredients, such as colourings, with antioxidant and other beneficial properties, is an interesting subject. In this work, the capacity of the biomass of the microalga Chlorella vulgaris (which has been widely used as a food supplement) as a fat mimetic, and its emulsifier ability, was evaluated. Pea protein emulsions with C. vulgaris addition (both green and orange - carotenogenic) were prepared at different protein and oil contents. The rheological properties of the respective food emulsions were measured in terms of the viscoelastic properties and steady state flow behaviour and texture properties. It was observed that the two microalgal forms evidenced a fat mimetic capacity in these emulsions, the performance of the green stage of this C. vulgaris organism was significantly (p < 0.05) better than the orange stage.
اظهر المزيد [+] اقل [-]Microalgae fortification of low-fat oil-in-water food emulsions: an evaluation of the physicochemical and rheological properties النص الكامل
2021
Uribe-Wandurraga, Zaida Natalia | Martínez-Sánchez, Irene | Savall, Carmen | García Segovia, Purificación | Martínez Monzó, Javier
Reducing the fat content in emulsions can give additional nutritional health benefits. Hence, developing low-fat oil-in-water emulsions, fortified with healthy microalgae providing advantageous properties, is an interesting topic. In this study, the addition of Arthrospira platensis (Spirulina), Chlorella vulgaris (Chlorella), and Dunaliella salina (Dunaliella) microalgae biomass on the physicochemical properties of low-fat oil-in-water emulsion formulations were evaluated. The rheological properties of food emulsions were measured in terms of the viscoelastic, flow behaviour, and textural properties, with all properties studied during 60 days. pH values of all the emulsions ranged between 3.0 and 3.7 and agreed to the Codex Alimentarius Commission. Moreover, their rheological behaviour may be classified as weak gel-like, a distinguishing characteristic of low-fat emulsion products. Substantial differences in rheological properties were observed between the fortified microalgae emulsions over the storage time (60 days). However, incorporating Spirulina or Dunaliella gave emulsions with stable texture, viscoelastic, and rheological properties. The prepared emulsions displayed good colour stability for Chlorella and Dunaliella. Overall, the fortified microalgae low-fat emulsions are expected to provide a blueprint for the design of low-fat mayonnaise-like food emulsions.
اظهر المزيد [+] اقل [-]Influence of oil and emulsifier concentrations on the rheological properties of oil-in-water salad dressing food emulsions النص الكامل
1995
José María Franco | Antonio Guerrero | Críspulo Gallegos
The viscous and viscoelastic behaviour of food emulsions containing a mixture of egg yolk and sucrose stearate as a function of oil and sucrose stearate concentrations were studied. Oil concentrations ranged between 40- 55% w/w for emulsions containing 5% w/w sucrose stearate and sucrose ester concentrations varied between 0-10% w/w for emulsions containing 50% w/w oil. steady flow, linear oscillatory shear tests and droplet size distribution measurements were carried out. An increase in oil or emulsifier concentration produced an increase in both the steady-state viscosity and in the viscoelastic functions. The results have been explained on the basis of the relationship between the structural parameters and the rheology of the emulsions studied.
اظهر المزيد [+] اقل [-]Exploring the Relationship between Structural and Air–Water Interfacial Properties of Wheat (Triticum aestivum L.) Gluten Hydrolysates in a Food System Relevant pH Range النص الكامل
2017
Wouters, Arno G. B. | Fierens, Ellen | Rombouts, Ine | Brijs, Kristof | Joye, Iris J. | Delcour, Jan A.
The relationship between structural and foaming properties of two tryptic and two peptic wheat gluten hydrolysates was studied at different pH conditions. The impact of pH on foam stability (FS) of the samples heavily depended on the peptidase used and the degree of hydrolysis reached. Surface dilatational moduli were in most, but not all, instances related to FS, implying that, although the formation of a viscoelastic protein hydrolysate film is certainly important, this is not the only phenomenon that determines FS. In contrast to what might be expected, surface charge was not a major factor contributing to FS, except when close to the point-of-zero-charge. Surface hydrophobicity and intrinsic fluorescence measurements suggested that changes in protein conformation take place when the pH is varied, which can in turn influence foaming. Finally, hydrolyzed gluten proteins formed relatively large particles, suggesting that protein hydrolysate aggregation probably influences its foaming properties.
اظهر المزيد [+] اقل [-]