خيارات البحث
النتائج 1361 - 1,363 من 1,363
Evapotranspiration capture and stream depletion due to groundwater pumping under variable boreal climate conditions: Sudogda River Basin, Russia | Capture de l’évapotranspiration et diminution du débit des cours d’eau dus au pompage des eaux souterraines dans des conditions climatiques boréales variables: Bassin de la Rivière Sudogda, Russie Captura de la evapotranspiración y el agotamiento de una corriente debido al bombeo del agua subterránea en variables condiciones climáticas boreales: Cuenca del Río Sudogda, Rusia 在多变的北方气候条件下由于抽取地下水致使土壤水分蒸发蒸腾损失总量捕获及河流河水的消耗:俄罗斯Sudogda河流域 Captura de evapotranspiração e rebaixamento de riachos pelo bombeamento de águas subterrâneas sob condições climáticas boreais variáveis: Bacia do Rio Sudogda, Rússia Влияние эксплуатации подземных вод на эвапотранспирацию и речной сток при многолетней изменчивости гумидного климата на примере бассейна р. Судогда, Россия النص الكامل
2018
Grinevskiy, Sergey | Filimonova, Elena | Sporyshev, Victor | Samartsev, Vsevolod | Pozdniakov, Sergey
Groundwater pumping and changes in climate-induced recharge lead to lower groundwater levels and significant changes in the water balance of a catchment. Water previously discharged as evapotranspiration can become a source of pumpage. Neglecting this effect leads to overestimated streamflow depletion. A small river basin (Sudogda River Basin, Russia) with a boreal climate and with long-term records of groundwater head and streamflow rate (showing that the measured stream depletion is less than the pumping rate) was investigated. The role of evapotranspiration in the water balance was analyzed by a hydrogeological model using MODFLOW-2005 with the STR package; the annual variation in recharge was obtained with the codes Surfbal and HYDRUS. The Sudogda River Basin was classified according to landscape and unsaturated-zone texture classes, and for each classified zone, the unsaturated-zone flow simulation was used to calculate the annual recharge dynamics for the observation period. Calibration of the regional flow model was conducted using flow and head observations jointly for two steady-state flow conditions—natural (before pumping started) and stressed (pumping). The simulations showed that pumped water originates from three sources: intercepted baseflow (75% of the annual total pumping rate), the capture of groundwater evapotranspiration discharge plus increased groundwater recharge (17%), and induced stream infiltration (8%). Additionally, multi-year precipitation records were analyzed to detect any long-term recharge and pumping water-budget changes. The results showed that increasing groundwater recharge by natural precipitation leads to (1) decreased intercepted baseflow and induced streamflow infiltration and (2) increased intercepted evapotranspiration discharge, thereby reducing stream depletion.
اظهر المزيد [+] اقل [-]Monitoring runoff coefficients and groundwater levels using data from GRACE, GLDAS, and hydrometeorological stations: analysis of a Colombian foreland basin | Suivi des coefficients de ruissellement et des niveaux piézométriques en utilisant les données de GRACE, GLDAS et des stations hydrométéorologiques: étude d’un bassin d’avant-pays colombien Monitoreo de coeficientes de escorrentía y niveles de agua subterránea utilizando datos de GRACE, GLDAS y estaciones hidrometeorológicas: análisis de una cuenca de antepaís colombiana 采用重力恢复和气候实验数据、全球大地数据同化系统数据以及水文气象站等数据监测径流系数:哥伦比亚沿海地区平原的分析 Monitoramento dos coeficientes de escoamento superficial e níveis das águas subterrâneas, utilizando dados do GRACE, GLDAS e estações hidrometeorológicas: análise de uma bacia de ante-país Colombiana النص الكامل
2018
Ospina M., Diana L. | Vargas J., Carlos A.
The determination of space–time variation in groundwater accumulation in Colombia’s Eastern Llanos foreland basin from 2003 to 2014 was done using terrestrial water storage (TWS) anomalies identified in two versions of the Gravity Recovery and Climate Experiment (GRACE) data—from the Global Data Center for Space Research (CSR) at the University of Texas at Austin (USA) and from the Institute of Geodesy at the Graz University of Technology (ITSG, Austria)—and also soil moisture storage (SMS) data from the Global Land Data Assimilation System (GLDAS). These data were compared to changes in groundwater storage obtained using the water-budget equation, calculated based on recorded data from hydrometeorological stations. This study confirmed the viability of using satellite information to understand and monitor temporal variation in groundwater recharge in the study area. Temporal variations in TWS, SMS, and groundwater level were shown to correspond to regional rain and drought periods, which are sensitive to climate phenomena such as El Niño and La Niña. Comparing changes in TWS and groundwater level to changes in infiltration and recharge revealed correlation coefficients of 0.56 and 0.98 with CSR data and 0.71 and 0.86 with ITSG data, respectively.
اظهر المزيد [+] اقل [-]Seasonal variability of oxygen and hydrogen isotopes in a wetland system of the Yunnan-Guizhou Plateau, southwest China: a quantitative assessment of groundwater inflow fluxes | Variabilité saisonnière des isotopes de l’oxygène et de l’hydrogène dans un système de zones humides du Plateau de Guizhou au Yunnan, dans le sud-ouest de la Chine: une évaluation quantitative des flux des apports des eaux souterraines Variabilidad estacional de isótopos de oxígeno e hidrógeno en un sistema de humedales de la meseta de Yunnan Guizhou, suroeste de China: una evaluación cuantitativa de los flujos de entrada del agua subterránea 中国西南部云贵高原一个湿地系统氧氢同位素的季节性变化:地下水流入通量定量评价 Variação sazonal de isótopos de oxigênio e hidrogênio em um sistema de área úmida no planalto de Yunnan Guizhou, sudoeste da China: uma avaliação quantitativa do fluxo de recarga de águas subterrâneas النص الكامل
2018
Cao, Xingxing | Wu, Pan | Zhou, Shaoqi | Han, Zhiwei | Tu, Han | Zhang, Shui
The Caohai Wetland serves as an important ecosystem on the Yunnan–Guizhou Plateau and as a nationally important nature reserve for migratory birds in China. In this study, surface water, groundwater and wetland water were collected for the measurement of environmental isotopes to reveal the seasonal variability of oxygen and hydrogen isotopes (δ¹⁸O, δD), sources of water, and groundwater inflow fluxes. Results showed that surface water and groundwater are of meteoric origin. The isotopes in samples of wetland water were well mixed vertically in seasons of both high-flow (September) and low-flow (April); however, marked seasonal and spatial variations were observed. During the high-flow season, the isotopic composition in surface wetland water varied from −97.13 to −41.73‰ for δD and from −13.17 to −4.70‰ for δ¹⁸O. The composition of stable isotopes in the eastern region of this wetland was lower than in the western region. These may have been influenced by uneven evaporation caused by the distribution of aquatic vegetation. During the low-flow season, δD and δ¹⁸O in the more open water with dead aquatic vegetation ranged from −37.11 to −11.77‰, and from −4.25 to −0.08‰, respectively. This may result from high evaporation rates in this season with the lowest atmospheric humidity. Groundwater fluxes were calculated by mass transfer and isotope mass balance approaches, suggesting that the water sources of the Caohai Wetland were mainly from groundwater in the high-flow season, while the groundwater has a smaller contribution to wetland water during the low-flow season.
اظهر المزيد [+] اقل [-]