The effect of Pyrolysis Temperature and Type of Organic Residues on Physicochemical Properties of Produced Biochar
2020
MalehMir Chegini, Mohamad | Golchin, Ahmad | Khadem Moghadam Igdelou, Nader | Moraveij, Kamran
Biochar has attracted the attention of many researchers because of its ability to improve soil fertility, immobilization of pollutants, as well as a suitable method of carbon sequestration and as a carbon reservoir. In order to investigate the effect of pyrolysis temperature and type of organic residues on physicochemical properties of biochars, a completely randomized designe as a factorial experiment was designed with two factors of organic residues type (wheat straw and walnut and almond bark) and pyrolysis temperature (300 and 500°C) in three replicates. The results showed that EC, pH, ash, and CEC of biochar increased at pyrolysis temperature of 300°C. By increasing the pyrolysis temperature to 500°C, the amount of organic carbon (OC), CEC, and surface functional groups of biochar decreased compared to biochar produced at 300 °C whereas pH, ash, and EC increased. The highest EC, pH, water soluble materials, ash, and the lowest bulk density were recorded in wheat straw biochar produced at 500°C. The highest value of equivalent calcium carbonate was obtained in almond peel biochar produced at 500°C. Biochar production yield decreased and the loss of volatile compound such as CO2 increased by increasing the pyrolysis temperature from 300°C to 500°C. In addition, the characteristics of biochar were dependent on type of feedstock and pyrolysis conditions (temperature and time residence).
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by University of Tehran