Effect of Land Use Change and Land Reclamation on Some Qualitative Characteristics and Activity of Some Enzymes in the Soil
2020
varasteh khanlari, Zahra | Golchin, Ahmad | Mosavi Kupar, Saead Abdollah
In this study, the effects of land use change (conversion of natural forest to paddy fields) and regeneration of deforested land on some qualitative and enzymatic properties of the soil were investigated. For this study, Populus Research Station in Guilan province, Astana Ashrafieh city was selected. Soil samples were collected from 5 land uses (natural forest, populus, Alnus and Taxodium and paddy forests) and two depths (0-20 and 20-40 cm). The data were analyzed as a factorial experiment in a completely randomized design with three replications. The factors included land use type at five levels and soil depth at two levels that were studied in three replications. Therefore, the number of treatments were 5 * 2 = 10, totally 30 units accounting replications. In total, there were 30 samples of disturbed soil and 30 samples of undisturbed soil that constituted the statistical data of the experiment. Some physical, chemical and biological properties of the samples were measured. The results showed that the mean weight diameter (75%), saturated hydraulic conductivity (95%), water repellency (53%), organic carbon (52%), total nitrogen (52%) and microbial biomass carbon (53%) in the natural forest were higher than the ones in the paddy field. Also, the activity of urease and arylsulfatase in the paddy soil was significantly lower than the one in the natural forest soil. However, the activity of dehydrogenase in the paddy soil was higher than the one in natural forest soil, indicating oxygen availability and moisture affect the activity of dehydrogenase and its activity increases as the soil moisture increases. Reclamation of some deforested lands by hand planted forest showed that Populus vegetation was more effective than the other vegetation covers in increasing aggregate stability, hydraulic conductivity, and microbial biomass carbon. While Taxodium cover increased the activities of urease, arylsulfatase and acid phosphatase more than the ones in other vegetation covers. The specific activity of enzymes (enzyme activity per unit of organic carbon), in dehydrogenase was significantly higher in the paddy soil than in the soil under natural forest. This indicates that the activity of this enzyme is independent of soil organic carbon changes and is dependent on soil moisture. Overall, it can be concluded that, in comparison with the qualitative and enzymatic activity, Taxodium coating improved these properties better than populus and Alnus coating.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by University of Tehran