Evaluation of Soil Surface Stabilization Affected by Organic and Mineral Mulches Using Erosional Plots and Profile Meter
2022
Rizehbandi, Elham | Khademalrasoul, Ataallah | Taghavi zahedkolaei, Mehdi
Wind erosion is one of the most dominant soil degradation factors in semi-arid and arid regions. Mulching is a management scenario to protect the soil surface. The present research accomplished to assess the efficacy of some organic and inorganic mulch on soil physical and hydraulic properties in the Kupal region of Khuzestan province. These mulches consist of organic mulch (O) at three levels O1, O2 and O3 at combined ratios of sugarcane bagasse, gelatin and gum arabic, mineral mulch (M) at two levels M1 and M2 from MNF mulch and Nanosilica hydrogel (H) mulch was made of nanosilica hydrogel at two levels H1 and H2, which were applied to the erosional plots with the size of 50 × 30 cm in May 2020, profile meters installed in each plot. After four months, applying the mulches had significant effects to improve the physical and hydraulic properties of the soil. The O3 and O2 treatments demonstrated the highest effect on soil MWD, by the value of 2.49 mm, and 2.45 mm, respectively. Soil organic carbon (SOC) increased from 0.2% in the control treatment to 0.92% in the O3 treatment. The H1 treatment depicted the lowest effect on SOC by the value of 0.50%. The biggest amount of soil water content in all moisture points was related to the O3 treatment. The lowest amount of soil loss was observed in O3 treatment (1490 ton / km.year) and the highest value was related to the control treatment (6028 ton / km.year). The organic matter in the mulches due to its binding effect was able to improve aggregation process. To conclude the binding and armoring effect are the main effects of organic mulch. Organic matter in mulches, due to its binding effect, is able to improve and increase the agglomeration process and reduce soil losses.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by University of Tehran