Influence of the downwash airflow in Hexacopter Drone on the spray distribution pattern of boom sprayer
2023
D., Yallappa | Kavitha, R. | Surendrakumar, A. | Suthakar, B. | Kumar, A P. Mohan | Kannan, Balaji | Kalarani, M K
unknown. The spray characteristics of drone sprayers are significantly influenced by the downwash airflow produced by Drone multi-rotors. The present study aimed to study the influence of downwash airflow and the operational parameters of Drone sprayer, viz., flight height, travel speed, rotor configuration, payload and wind velocity on the spray distribution pattern for boom sprayer attachment to Drone. The boom type sprayer consisted of four numbers of flat fan nozzles placed at three different spacing viz., 30, 45 and 60 cm between each nozzle. The spray distribution pattern of the Hexacopter Drone was studied at three different operating pressures, viz., 3.0, 4.0 and 5.0 kg cm-2. A spray patternator of 5 m x 5 m was developed per the Bureau of Indian Standards (BIS) standard to study the spray uniformity of volume distribution pattern. The best spray uniformity was found as 0.37 % CV value at 60 cm nozzle spacing and 4 kg cm-2 operating pressure. The optimised parameters viz., 60 cm of nozzle spacing and 4 kg cm-2 operating pressure, the influence of downwash airflow on the spray volume distribution of hexacopter Drone with boom spray attachment were studied. The Drone hovered at three different heights, viz., 1.0, 2.0 and 3.0 m from the top of the patternator and spray operating pressure was maintained at 4 kg cm-2. It was observed that less volume of spray was collected at the middle portion when the Unmanned Aerial Vehicle (UAV) was hovered at 1.0 m height due to the direct impact of downwash airflow of rotors. The uniform spray volume distribution pattern was observed when Drone hovered from 1.0 m to 3.0 m height. A round vertex pattern of spray pattern was generated with boom type nozzles configuration due to the direct impact of downwash airflow of rotors. This study will be helpful in the configuration of nozzles attached to the drone sprayers, optimization of spray operational parameters, and revealing spray volume distribution pattern.
Show more [+] Less [-]Bibliographic information
This bibliographic record has been provided by Applied and Natural Science Foundation