Selective Flotation of Calcite from Fluorite: A Novel Reagent Schedule
Zhiyong Gao | Yuesheng Gao | Yiyang Zhu | Yuehua Hu | Wei Sun
Fluorite is an important strategic mineral. In general, fluorite ores will contain a certain amount of calcite gangue mineral. Thus, they need to be separated from each other. For an economic separation, a reverse flotation process is used to float calcite gangue from fluorite. However, little information on the separation is available. In this study, a novel reagent schedule using citric acid (CA) as the depressant, sodium fluoride (NaF) as the regulator and sulfoleic acid (SOA) as the collector, was developed to separate calcite from fluorite. The results demonstrated a high selectivity for the flotation of calcite from fluorite using this new reagent schedule. The best selective separation for a single mineral and mixed binary minerals was obtained when 200 mg/L of NaF, 50 mg/L of CA, and 6 mg/L of SOA were used at pH 9. In addition, a batch flotation experiment was carried out using a run-of-mine feed material. Selective separation was achieved with 85.18% calcite removal while only 11.2% of fluorite was lost. An attempt was made to understand the effect of the new reagent schedule on the flotation of calcite. The results from both microflotation and bench scale flotation demonstrated a great potential for industrial application using this novel reagent schedule to upgrade fluorite ore.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Multidisciplinary Digital Publishing Institute