Bio-Fenton-Assisted Biological Process for Efficient Mineralization of Polycyclic Aromatic Hydrocarbons from the Environment
Xiaohui Wang; Chunyan Song; Xiao Liu; Jing Zhang; Yanbo Zhang; Xueqing Shi; Dogun Kim
The intensive production of fossil fuels has led to serious polycyclic aromatic hydrocarbon (PAH) contamination in water and soil environments (as PAHs are typical types of emerging contaminants). Bio-Fenton, an alternative to Fenton oxidation, which generates hydrogen peroxide at a nearly neutral pH condition, could ideally work as a pretreatment to recalcitrant organics, which could be combined with the subsequent biological treatment without any need for pH adjustment. The present study investigated the performance of a Bio-Fenton-assisted biological process for mineralization of three typical types of PAHs. The hydrogen peroxide production, PAH removal, overall organic mineralization, and microbial community structure were comprehensively studied. The results showed that the combined process could achieve efficient chemical oxygen demand (COD) removal (88.1%) of mixed PAHs as compared to activated sludge (33.1%), where individual PAH removal efficiencies of 99.6%, 83.8%, and 91.3% were observed for naphthalene (NAP), anthracene (ANT), and pyrene (PYR), respectively, with the combined process.
Show more [+] Less [-]Bibliographic information
This bibliographic record has been provided by Multidisciplinary Digital Publishing Institute