First Galileo Single-Frequency Occultation Process and Precision Analysis of FengYun3E
2023
Ming Yang | Xiangguang Meng | Haoran Tian | Yueqiang Sun | Qifei Du | Weihua Bai | Bowen Wang | Xianyi Wang | Peng Hu | Guangyuan Tan
This article proposes a single-frequency occultation method whose core is the reconstruction of a second frequency measurement. We process the actual received Galileo E1 single-frequency occultation observation data of FengYun3E to meet the urgent need for single-frequency Galileo occultation inversion of FengYun3 E/F/G/H satellites. Galileo single-frequency occultation events are globally distributed evenly and have stable quantities. The refractive index products and dry temperature products inverted from the single-frequency occultation data are reliable at altitudes of 5&ndash:30 km. The Galileo E1 single-frequency occultation process can effectively improve the output of FengYun3E/GNOS occultation products. These results validate the feasibility and correctness of using FengYun3/GNOS for the actual Galileo single-frequency occultation process. The atmospheric occultation products of Galileo single-frequency occultation increase the quantity of global occultation products and serve as a beneficial supplement to global numerical weather prediction data sources.
Show more [+] Less [-]Bibliographic information
This bibliographic record has been provided by Multidisciplinary Digital Publishing Institute