Spatially Interpolated CYGNSS Data Improve Downscaled 3 km SMAP/CYGNSS Soil Moisture
2024
Liza J. Wernicke | Clara C. Chew | Eric E. Small
Soil moisture data with both a fine spatial scale and a short global repeat period would benefit many hydrologic and climatic applications. Since the radar transmitter malfunctioned on NASA&rsquo:s Soil Moisture Active Passive (SMAP) in 2015, SMAP soil moisture has been downscaled using numerous alternative fine-resolution data. In this paper, we describe the creation and validation of a new downscaled 3 km soil moisture dataset, which is the culmination of previous work. We downscaled SMAP enhanced 9 km brightness temperatures by merging them with L-band Cyclone Global Navigation Satellite System (CYGNSS) reflectivity data, using a modified version of the SMAP active&ndash:passive brightness temperature algorithm. We then calculated 3 km SMAP/CYGNSS soil moisture using the resulting 3 km SMAP/CYGNSS brightness temperatures and the SMAP single-channel vertically polarized soil moisture algorithm (SCA-V). To remedy the sparse daily coverage of CYGNSS data at a 3 km spatial resolution, we used spatially interpolated CYGNSS data to downscale SMAP soil moisture. 3 km interpolated SMAP/CYGNSS soil moisture matches the SMAP repeat period of ~2&ndash:3 days, providing a soil moisture dataset with both a fine spatial scale and a short repeat period. 3 km interpolated SMAP/CYGNSS soil moisture, upscaled to 9 km, has an average correlation of 0.82 and an average unbiased root mean square difference (ubRMSD) of 0.035 cm3/cm3 using all SMAP 9 km core validation sites (CVSs) within ±:38°: latitude. The observed (not interpolated) SMAP/CYGNSS soil moisture did not perform as well at the SMAP 9 km CVSs, with an average correlation of 0.68 and an average ubRMSD of 0.048 cm3/cm3. A sensitivity analysis shows that CYGNSS reflectivity is likely responsible for most of the uncertainty in downscaled SMAP/CYGNSS soil moisture. The success of 3 km SMAP/CYGNSS soil moisture demonstrates that Global Navigation Satellite System&ndash:Reflectometry (GNSS-R) observations are effective for downscaling soil moisture.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Multidisciplinary Digital Publishing Institute