Pears Internal Quality Inspection Based on X-Ray Imaging and Multi-Criteria Decision Fusion Model
2025
Zeqing Yang | Jiahui Zhang | Zhimeng Li | Ning Hu | Zhengpan Qi
Pears are susceptible to internal defects during growth and post-harvest handling, compromising their quality and market value. Traditional detection methods, such as manual inspection and physicochemical analysis, face limitations in efficiency, objectivity, and non-destructiveness. To address these challenges, this study investigates a non-destructive approach integrating X-ray imaging and multi-criteria decision (MCD) theory for non-destructive internal defect detection in pears. Internal defects were identified by analyzing grayscale variations in X-ray images. The proposed method combines manual feature-based classifiers, including Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG), with a deep convolutional neural network (DCNN) model within an MCD-based fusion framework. Experimental results demonstrated that the fused model achieved a detection accuracy of 97.1%, significantly outperforming individual classifiers. This approach effectively reduced misclassification caused by structural similarities in X-ray images. The study confirms the efficacy of X-ray imaging coupled with multi-classifier fusion for accurate and non-destructive internal quality evaluation of pears, offering practical value for fruit grading and post-harvest management in the pear industry.
Show more [+] Less [-]Bibliographic information
This bibliographic record has been provided by Multidisciplinary Digital Publishing Institute