A Multi-Feature Fusion Approach for Sea Fog Detection Under Complex Background
2025
Shuyuan Yang | Yuzhu Tang | Zeming Zhou | Xiaofeng Zhao | Pinglv Yang | Yangfan Hu | Ran Bo
Sea fog is a natural phenomenon that significantly reduces visibility, posing navigational hazards for ships and impacting coastal activities. Geostationary meteorological satellite data have proven to be indispensable for sea fog monitoring due to their large spatial coverage and spatiotemporal consistency. However, the spectral similarities between sea fog and low clouds result in omissions and misclassifications. Furthermore, high clouds obscure certain sea fog regions, leading to under-detection and high false alarm rates. In this paper, we present a novel sea fog detection method to alleviate the challenges. Specifically, the approach leverages a fusion of spectral, motion, and spatiotemporal texture consistency features to effectively differentiate sea fog and low clouds. Additionally, a multi-scale self-attention module is incorporated to recover the sea fog region obscured by clouds. Based on the spatial distribution characteristics of sea fog and clouds, we redesigned the loss function to integrate total variation loss, focal loss, and dice loss. Experimental results validate the effectiveness of the proposed method, and the detection accuracy is compared with the vertical feature mask produced by the CALIOP and exhibits a high level of consistency.
Show more [+] Less [-]Bibliographic information
This bibliographic record has been provided by Multidisciplinary Digital Publishing Institute