Structural Design and Parameter Optimization of In-Row Deep Fertilizer Application Device for Maize
2025
Shengxian Wu | Zihao Dou | Shulong Fei | Feng Shi | Xinbo Zhang | Ze Liu | Dongyan Huang
To enhance the stability and consistency of topdressing depth during maize fertilization, an inter-row deep fertilizer application unit was designed. Through analysis of the coherence between subsurface pressure and topdressing depth stability obtained from stability performance tests, structural optimizations were implemented on the deep application unit. This resulted in an integrated vibration damping device incorporating a magnetorheological damper (MR damper fertilizer application unit). The MR damper fertilizer application unit was validated through simulation testing. Using an orthogonal experimental design approach, soil bin tests were conducted to identify the preferred parameter ensemble for this unit. Subsequent field trials under these optimized parameters enabled comparative performance evaluation of both fertilizer application units under actual operating conditions. The simulation results indicated that the MR damper fertilizer application unit achieved reductions in the standard deviation of the gauge wheel&rsquo:s force on the ground by 39.6%, 41.0%, and 44.6% at three distinct operational speeds, respectively. The soil bin tests identified the optimal operational parameters as follows: MR damper current of 0.6 A, vibration damping system spring stiffness of 8 N/mm, and a working speed of 7.2 km/h. Field testing results indicated that, when utilizing the optimal parameters, the MR damper fertilizer application unit achieved a 6.9% improvement in the rate of qualified topdressing depth and a 3.8% reduction in the depth variation coefficient compared to the conventional deep fertilizer application unit. Compared to traditional fertilizer applicators, this study effectively addresses issues of poor fertilization depth uniformity and low qualification rates caused by severe gauge wheel bouncing due to uneven terrain during field operations.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Multidisciplinary Digital Publishing Institute