Marine Debris Detection in Real Time: A Lightweight UTNet Model
2025
Junqi Cui | Shuyi Zhou | Guangjun Xu | Xiaodong Liu | Xiaoqian Gao
The increasingly severe issue of marine debris presents a critical threat to the sustainable development of marine ecosystems. Real-time detection is essential for timely intervention and cleanup. Furthermore, the density of marine debris exhibits significant depth-dependent variation, resulting in degraded detection accuracy. Based on 9625 publicly available underwater images spanning various depths, this study proposes UTNet, a lightweight neural model, to improve the effectiveness of real-time intelligent identification of marine debris through multidimensional optimization. Compared to Faster R-CNN, SSD, and YOLOv5/v8/v11/v12, the UTNet model demonstrates enhanced performance in random image detection, achieving maximum improvements of 3.5% in mAP50 and 9.3% in mAP50-95, while maintaining reduced parameter count and low computational complexity. The UTNet model is further evaluated on underwater videos for real-time debris recognition at varying depths to validate its capability. Results show that the UTNet model exhibits a consistently increasing trend in confidence levels across different depths as detection distance decreases, with peak values of 0.901 at the surface and 0.764 at deep-sea levels. In contrast, the other six models display greater performance fluctuations and fail to maintain detection stability, particularly at intermediate and deep depths, with evident false positives and missed detections. In summary, the lightweight UTNet model developed in this study achieves high detection accuracy and computational efficiency, enabling real-time, high-precision detection of marine debris at varying depths and ultimately benefiting mitigation and cleanup efforts.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Multidisciplinary Digital Publishing Institute