MWR-Net: An Edge-Oriented Lightweight Framework for Image Restoration in Single-Lens Infrared Computational Imaging
2025
Xuanyu Qian | Xuquan Wang | Yujie Xing | Guishuo Yang | Xiong Dun | Zhanshan Wang | Xinbin Cheng
Infrared video imaging is an cornerstone technology for environmental perception, particularly in drone-based remote sensing applications such as disaster assessment and infrastructure inspection. Conventional systems, however, rely on bulky optical architectures that limit deployment on lightweight aerial platforms. Computational imaging offers a promising alternative by integrating optical encoding with algorithmic reconstruction, enabling compact hardware while maintaining imaging performance comparable to sophisticated multi-lens systems. Nonetheless, achieving real-time video-rate computational image restoration on resource-constrained unmanned aerial vehicles (UAVs) remains a critical challenge. To address this, we propose Mobile Wavelet Restoration-Net (MWR-Net), a lightweight deep learning framework tailored for real-time infrared image restoration. Built on a MobileNetV4 backbone, MWR-Net leverages depthwise separable convolutions and an optimized downsampling scheme to minimize parameters and computational overhead. A novel wavelet-domain loss enhances high-frequency detail recovery, while the modulation transfer function (MTF) is adopted as an optics-aware evaluation metric. With only 666.37 K parameters and 6.17 G MACs, MWR-Net achieves a PSNR of 37.10 dB and an SSIM of 0.964 on a custom dataset, outperforming a pruned U-Net baseline. Deployed on an RK3588 chip, it runs at 42 FPS. These results demonstrate MWR-Net&rsquo:s potential as an efficient and practical solution for UAV-based infrared sensing applications.
Show more [+] Less [-]Bibliographic information
This bibliographic record has been provided by Multidisciplinary Digital Publishing Institute