Hydroxytyrosol Reduces Foam Cell Formation and Endothelial Inflammation Regulating the PPARγ/LXRα/ABCA1 Pathway
2023
Sara Franceschelli | Federica De Cecco | Mirko Pesce | Patrizio Ripari | Maria Teresa Guagnano | Arturo Bravo Nuevo | Alfredo Grilli | Silvia Sancilio | Lorenza Speranza
Cholesterol accumulation in macrophages leads to the formation of foam cells and increases the risk of developing atherosclerosis. We have verified whether hydroxytyrosol (HT), a phenolic compound with anti-inflammatory and antioxidant properties, can reduce the cholesterol build up in THP-1 macrophage-derived foam cells. We have also investigated the potential mechanisms. Oil Red O staining and high-performance liquid chromatography (HPLC) assays were utilized to detect cellular lipid accumulation and cholesterol content, respectively, in THP-1 macrophages foam cells treated with HT. The impact of HT on cholesterol metabolism-related molecules (SR-A1, CD36, LOX-1, ABCA1, ABCG1, PPARγ and LRX-α) in foam cells was assessed using real-time PCR (RT-qPCR) and Western blot analyses. Finally, the effect of HT on the adhesion of THP-1 monocytes to human vascular endothelial cells (HUVEC) was analyzed to study endothelial activation. We found that HT activates the PPARγ/LXRα pathway to upregulate ABCA1 expression, reducing cholesterol accumulation in foam cells. Moreover, HT significantly inhibited monocyte adhesion and reduced the levels of adhesion factors (ICAM-1 and VCAM-1) and pro-inflammatory factors (IL-6 and TNF-α) in LPS-induced endothelial cells. Taken together, our findings suggest that HT, with its ability to interfere with the import and export of cholesterol, could represent a new therapeutic strategy for the treatment of atherosclerotic disease.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Directory of Open Access Journals