AGRIS - International System for Agricultural Science and Technology

Part A: Innovative Data Augmentation Approach to Enhance Machine Learning Efficiency—Case Study for Hydrodynamic Purposes

2024

Hamed Majidiyan | Hossein Enshaei | Damon Howe | Eric Gubesch


Bibliographic information
Applied Sciences
Volume 15 Issue 1 Pagination 158 ISSN 2076-3417
Publisher
MDPI AG
Other Subjects
Feature engineering; Numerical modelling
Language
English

2025-01-28
DOAJ
Data Provider
Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at agris@fao.org