Emerging technologies upscaling: A framework for matching LCA practices with upscaling archetypes
2024
Riondet, Lucas | Rio, Maud | Perrot-Bernardet, Véronique | Zwolinski, Peggy | Conception Systémique: Homme, Environnement, Technologies (G-SCOP_COSYS) ; Laboratoire des sciences pour la conception, l'optimisation et la production (G-SCOP) ; Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP) ; Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP) ; Université Grenoble Alpes (UGA) | Institut de Mécanique et d'Ingénierie de Bordeaux (I2M) ; Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Arts et Métiers Sciences et Technologies | École Nationale Supérieure d'Arts et Métiers (ENSAM) | This work has been supported by the Carnot Energies du Futur institute and the Carnot ARTS institute.
This article is the second of three parts of a thesis manuscript prepared between March 2021 and July 2024.
Show more [+] Less [-]International audience
Show more [+] Less [-]English. Society asks engineers and designers, though sustainability targets, to be highly concerned with socio-technical and environmental consequences generated by the technology they develop and deploy in society. Life Cycle Assessment (LCA) as a methodology can be a tool for assessing the sustainability of technological change of scale, however, the diversity of LCA approaches hinders their adoption by engineers, including LCA practitioners in product design teams. Therefore, clarifying LCA approaches available in the literature is necessary to deal with the environmental assessment of emerging technology upscaling. To this end, this research paper carries out a literature review of LCA practices and characterises them with conceptual and operational characteristics. This characterization provided the basis for matching the available LCA approaches with the different facets (also known as archetypes) of a technology upscaling to be environmentally assessed, based on their common characteristics. This literature review produced three main results: first, fifteen LCA modes are characterized by definition, addressed questions, studied objects, the expertise required, scope specificities, and structuring references. Second, guidelines have been extracted from selected case studies or reviews from different engineering fields (e.g. chemistry, energy, transport). This constitutes a generic LCA framework to environmentally assess each upscaling archetype. Third, the LCA references are ranked by the related engineering fields. Finally, the challenges of extending these three results are discussed, especially concerning the emergence of new LCA modes in reaction to specific needs for environmental assessments (e.g. transition LCA) and in an eco-design perspective based on environmental upscaling assessment. This work paves the way for two kinds of further research: first, to refine theoretical and practical LCA modes compatibility based on developments by LCA experts. Second, to produce operational guidelines for engineers and designers practicing LCA to transfer ongoing and future LCA developments. This would bring comprehensiveness to the environmental assessment of emerging technology upscaling and a sustainability vision of technology development and production.
Show more [+] Less [-]Bibliographic information
This bibliographic record has been provided by Institut national de la recherche agronomique