Spatial Downscaling of MODIS Snow Cover Observations Using Sentinel-2 Snow Products
2021
Revuelto, Jesús | Alonso-González, Esteban | Gascoin, Simon | Rodríguez-López, Guillermo | López-Moreno, Juan Ignacio | Instituto Pirenaico de Ecologìa = Pyrenean Institute of Ecology [Zaragoza] (IPE - CSIC) ; Consejo Superior de Investigaciones Cientificas [España] = Spanish National Research Council [Spain] (CSIC) | Centre d'études spatiales de la biosphère (CESBIO) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | ANR-20-CE32-0002,TOP,Trajectoires des systèmes agro-pastoraux en montagne: adaptation des pratiques aux changments climatiques, écologiques et socio-économiques(2020)
International audience
Show more [+] Less [-]English. Understanding those processes in which snow dynamics has a significant influence requires long-term and high spatio-temporal resolution observations. While new optical space-borne sensors overcome many previous snow cover monitoring limitations, their short temporal length limits their application in climatological studies. This work describes and evaluates a probabilistic spatial downscaling of MODIS snow cover observations in mountain areas. The approach takes advantage of the already available high spatial resolution Sentinel-2 snow observations to obtain a snow probability occurrence, which is then used to determine the snow-covered areas inside partially snow-covered MODIS pixels. The methodology is supported by one main hypothesis: the snow distribution is strongly controlled by the topographic characteristics and this control has a high interannual persistence. Two approaches are proposed to increase the 500 m resolution MODIS snow cover observations to the 20 m grid resolution of Sentinel-2. The first of these computes the probability inside partially snow-covered MODIS pixels by determining the snow occurrence frequency for the 20 m Sentinel-2 pixels when clear-sky conditions occurred for both platforms. The second approach determines the snow probability occurrence for each Sentinel-2 pixel by computing the number of days in which snow was observed on each grid cell and then dividing it by the total number of clear-sky days per grid cell. The methodology was evaluated in three mountain areas in the Iberian Peninsula from 2015 to 2021. The 20 m resolution snow cover maps derived from the two probabilistic methods provide better results than those obtained with MODIS images downscaled to 20 m with a nearest-neighbor method in the three test sites, but the first provides superior performance. The evaluation showed that mean kappa values were at least 10% better for the two probabilistic methods, improving the scores in one of these sites by 25%. In addition, as the Sentinel-2 dataset becomes longer in time, the probabilistic approaches will become more robust, especially in areas where frequent cloud cover resulted in lower accuracy estimates.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Institut national de la recherche agronomique