Cache-aware scheduling of scientific workflows in a multisite cloud
2021
Heidsieck, Gaëtan | de Oliveira, Daniel | Pacitti, Esther | Pradal, Christophe | Tardieu, Francois | Valduriez, Patrick | Scientific Data Management (ZENITH) ; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria) | Universidade Federal Fluminense [Rio de Janeiro] (UFF) | Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Écophysiologie des Plantes sous Stress environnementaux (LEPSE) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | ANR-16-CONV-0004,DIGITAG,Institut Convergences en Agriculture Numérique(2016) | ANR-11-INBS-0012,PHENOME,Centre français de phénomique végétale(2011) | ANR-11-INBS-0013,IFB (ex Renabi-IFB),Institut français de bioinformatique(2011)
International audience
Show more [+] Less [-]English. Many scientific experiments today are performed using scientific workflows, which become more and more data-intensive. We consider the efficient execution of such workflows in a multisite cloud, leveraging heterogeneous resources available at multiple geo-distributed data centers. Since it is common for workflow users to reuse code or data from previous workflows, a promising approach for efficient workflow execution is to cache intermediate data in order to avoid re-executing entire workflows. However, caching intermediate data and scheduling workflows to exploit such caching in a multisite cloud is complex. In particular, workflow scheduling must be cache-aware, in order to decide whether reusing cache data or re-executing workflows entirely. In this paper, we propose a solution for cache-aware scheduling of scientific workflows in a multisite cloud. Our solution includes a distributed and parallel architecture and new algorithms for adaptive caching, cache site selection, and dynamic workflow scheduling. We implemented our solution in the OpenAlea workflow system, together with cache-aware distributed scheduling algorithms. Our experimental evaluation in a three-site cloud with a real application in plant phenotyping shows that our solution can yield major performance gains, reducing total time up to 42% with 60% of the same input data for each new execution.
Show more [+] Less [-]Bibliographic information
This bibliographic record has been provided by Institut national de la recherche agronomique