FAO AGRIS - International System for Agricultural Science and Technology

Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices

Shao, Guomin | Han, Wenting | Zhang, Huihui | Liu, Shouyang | Wang, Yi | Zhang, Liyuan | Cui, Xin | Northwest A & F University | Key Laboratory of Agricultural Internet of Things ; Northwest A & F University | School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, China | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Shaanxi Normal University (SNNU) | National Key Laboratory for Electronics Measurement Technology ; Université Paris Diderot - Paris 7 (UPD7) | National Natural Science Foundation of China (NSFC)51979233Major Project of Industry Education Research Cooperative Innovation in Yangling Demonstration Zone in China 2018CXY-23

AGROVOC Keywords

Bibliographic information
Publisher
CCSD, Elsevier Masson
Other Subjects
Laievapotranspiration; Fao56 approach; Crop water requirements; Random forest regression; [sdv.sa]life sciences [q-bio]/agricultural sciences
Language
English
ISBN
0006633248000
ISSN
03770846
Type
Journal Article; Journal Part; Journal Article; Journal Part
Source
ISSN: 0378-3774, Agricultural Water Management, https://hal.inrae.fr/hal-03770846, Agricultural Water Management, 2021, 252, pp.106906. ⟨10.1016/j.agwat.2021.106906⟩

2025-01-28
Dublin Core
Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at [email protected]