Soil controls on carboxylate-driven processes and opportunities
2022
Cornelis, Jean-Thomas | de Tombeur, Félix | The University of British Columbia, Vancouver | Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) ; Université Paul-Valéry - Montpellier 3 (UPVM)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM) | The University of Western Australia (UWA)
International audience
Show more [+] Less [-]English. <div><p>scenario we present is characterized by fine-textured and nutrient-rich soils, which leads to a relatively lower root exudation rate but high potential of carboxylate associations with minerals. This soil context is more inclined to contribute to soil C storage. In the second scenario, coarse-textured and nutrient-poor soils lead to higher rates of carboxylate production and higher carboxylate ability to mobilize nutrients through chelation. In this case, the carboxylateinduced mobilization of nutrients is maximized. We wish to emphasize the need to integrate the diversity of soil properties when it comes to propose regenerative agricultural practices that capitalize on the carboxylate-driven soil processes and their related ecological functions, whose potential benefits must be evaluated on a case-by-case basis according to the soil physicochemical context.</p></div> <div>Keywords Soil physicochemical properties • Root exudation • Carboxylate fates • Ecological functions</div> <div>Soils process and evolve with solar energy by-products<p>By being processed in soils, the photosynthetic conversion of light energy, carbon dioxide and water to carbohydrate molecules can be stored in terrestrial ecosystems as soil organic matter (SOM). At landscape and soil profile scales, plant-, fauna-and microbe-derived organic matter enrich rainwater Abstract Through their influence on microbial processes, carboxylates exuded by roots are key drivers of nutrient acquisition and organic carbon (C) storage in terrestrial ecosystems. However, the simultaneous interactions between environmental factors controlling the production and fates of carboxylates lead to uncertainty in understanding their role in terrestrial ecosystems. Here we suggest a more integrative view which points out that carboxylate-driven processes (metal chelation and formation of organomineral associations) can vary according to the soil physicochemical context. We show that variation in soil properties can substantially influence plant production of C surplus and discharge as root exudates. In addition, the control of soil processes (adsorption, complexation, leaching and biodegradation) on carboxylate fates is strongly governed by the physicochemical context. To illustrate this, the first soil</p></div>
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Institut national de la recherche agronomique