AGRIS - International System for Agricultural Science and Technology

Glyphosate residues in Solanum elaeagnifolium Cav. Plants and soil

2022

Faten Mohammad Backor


Bibliographic information
Publisher
Damascus University . Faculty of agricultural engineering
Other Subjects
مثابرة; باذنجان بري; .solanum elaeagnifolium cav; أليلوباثي; Pesticide residue; بقايا مبيدات; غليفوسات
Language
Arabic
Note
References 1. Abbott, W. S., 1925. A method for computing the effectiveness of an insecticide. Journal of Economic Entomology, Vol. 18, P. 265-267. 2. Abenavoli, M. R., Sorgona A., Sidari M., Badiani M. and Fuggi A., 2003. Coumarin inhibits the growth of carrot (Daucus carota L. cv. Saint Valery) cells in suspension culture. Journal of Plant Physiology, 160: 227-237. 3. AGBOOLA .A. A., EKUNDAYO .F. O., EKUNDAYO. E.A., FASORO. A., JOSEPH AYANTOLA. K.H., KAYODE .A. J. (2018). Influence of glyphosate on rhizosphere microorganisms and their ability to solubilise phosphate, JOURNAL OF MICROBIOLOGY AND ANTIMICROBIAL AGENTS; 4 (2): 15-21. 4. AKBULUT G. B., YİGİT .E., BAYRAM .D. (2018). Effect of Glyphosate on Some Protective Systems in Zea mays L. YYÜ TAR BİL DERG (YYU J AGR SCI) 28(1): 27-35. 5. Al Mouemar. A. (2006) La Morelle jaune (Solanum elaeagnifolium Cav.),une espèce envahissante des cultures cotonnières du Nord de la Syrie. InInvasive plants in Mediterranean Type Regions of the World (ed. Brunel S). Council of Europe Publishing, Strasbourg (FR). 6. ALEKSIEVA, A.; SERAFIMOV, P.L.2008. A study of allelopathic effect of Amaranthus retroflexus (L.) and Solanum nigrum (L.) in different soybean genotypes. Herbologia, v. 9, n. 2, p. 47-58. 7. Alexa E, Bragea M, Sumalan R, Lăzureanu A, Negrea M, Iancu S.2009. Dynamic of glyphosatemineralization in different soil types. Romanian Agricultural Research; 26: 57‐60. 8. ALIERO, A.; ASEKUN, O.; GRIERSON, D.; AFOLAYAN, A.2006. Chemical composition of the hexane extract from theleaves of Solanum pseudocapisicum. Asian Journal of Plant Sciences, v. 5, n. 6, p. 1054-1056, 2006. 9. Allen, O. N. 1959. Experiments in soil bacteriology. Third ed., Burgess Publishing Co., Minneapolis, 15- Minnesota. 10. Almeida AM, Castel-Branco MM, Falcao AC.2002. Linear regression for calibration lines revisited: Weighting schemes for bioanalytical methods. Journal of Chromatography. B,Analytical Technologies in the Biomedical and Life Sciences.774(2):215-222. 11. Almouemar, A. 2006. Ĺ Etat Actuelle de Ì Extension de (Solanum elaeagnifolium Cav.) en Syrie. Workshop Solanum ssousa Tunsia. 12. Al-Mouemar, A., & Azmeh, F. (2009). The control of invasive species:Solanum elaeagnifolium Cav., Eichhornia crassipes, in Syria.XIIIeme Colloque International sur la Biologie des MauvaisesHerbes, Dijon, France, pp. 457-464. 13. Al‐Rajab AJ, Hakami OM.2014. Behavior of the non‐selective herbicide glyphosate in agricultura soil. American Journal of Environmental Sciences; 10: 94‐101. 14. Al‐Rajab AJ, Schiavon M.2010. Degradation of 14C‐glyphosate and aminomethylphosphonic acid (AMPA) in three agricultural soils. Journal of Environmental Sciences 2010; 22: 1374‐1380. 15. Ameur, A. and M. Bouhache.1994. Emergence Dynamique of Silverleaf Nightshade (Solanum elaeagnifolium Cav.) in Surgarbeat and Wheat in Tadla (Morocco). Fifth Arab Congress of Plant Protection, Fes, Morocco. P 220. 16. Anonymous (2007) Solanum elaeagnifolium. Bulletin OEPP, 37, 236-245.17. Anton, F.A. 1993. Degradational behavior of the pesticides glyphosate and diflubenzuron in water. Bull. Environ. Contam. Toxicol. 51: 881-888. 18. Araujo, ASF, Monteiro RTR & Abarkeli RB (2003) Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52: 799–804. 19. Armado N. R., Amoroso., M. J. and Rajal., V. B. (2017). Effect of glyphosate application on soil quality and health under natural and zero tillage field conditions. Soil Environ. 36(2): 141-154. 20. Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol., 24: 1-15. Association of Official Agricultural Chemists, Official Methods. 9th Edn., Association Office Agric. Chem., Washington. 21. Atwood D, Paisley‐Jones C.2017. Pesticides industry sales and usage 2008–2012 marketEstimates . US Environmental Protection Agency, Washington, DC Google Scholar. 22. Babu, V.S., Muniyappa, T.V. & Shivakumar, H.R. (1995) Control of silverleaf nightshade (Solanum elaeagnifolium Cav.) through mechanical methods. World Weeds, 2, 93-98. 23. Bache, B. W. 1984. The role of calcium in buffering soils.Plant, Cell & Environment,7(6), 391-395. 24. Báez ME, Espinoza J, Silva R, Fuentes E.2015. Sorption ‐desorption behavior of pesticides and theirdegradation products in volcanic and nonvolcanic soils: interpretation of interactions through two‐way principal component analysis. Environmental Science and Pollution Research; 22: 8576‐8585.25. Balah , A.M. 2015. Herbicidal activity of constituents isolated from Solanum elaeagnifolium (Solanaceae) J. Crop Prot., 4 (4): 487‐496. 26. Bandana.B., Sharma .N., Joshi.R,. Gulati. A and Sondhia, Sh. (2015). Dissipation kinetics of glyphosate in tea and tea-field under northwestern mid-hill conditions of India., advance publication by j.stage. DOI: 10.1584/jpestics.D14-085. 27. Barja BC, Dos Santos Afonso M. (2005). Amino methyl phosphonic acid and glyphosate adsorption Onto goethite: A comparative study. Environ. Sci. Tech. 39:585-592 28. Baylis AD.2000. Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Management Science; 56: 299‐308. 29. Bekkouche, K., Markouk, M., Larhsini, M., Jana, M. and Lazrek, H. B. 2000. Molluscicidal properties of glycoalkaloid extracts from Moroccan Solanum species. Phytotherapy Research, 14: 366-367. 30. Belter,M, ;Sajnóg,A,2014.Baralkiewicz.Over a century of detection and auantification capabilities in analytical chemistry-Historical overview and trends.Talanta(129) :606-616. 31. Benachour N, Séralini GE. (2009). Glyphosate Formulations Induce Apoptosis and Necrosis inHuman Umbilical, Embryonic, and Placental Cells. Chem. Res. Toxicol. 22: 97–105. 32. Benbrook CM.8108. Impacts of genetically engineered crops on pesticide use in the US–the first sixteen years. Environmental Sciences Europe; 24: 2190‐4715. 33. Benbrook CM.2016. Trends in glyphosate herbicide use in the UnitedStates and globally. Environ Sci Eur. ;28:3. 34. Benedetti AsL, de Lourdes Vituri C, Trentin AG, Domingues MAC, Alvarez‐Silva M. The effects of sub‐chronic exposure ofWistar rats to the herbicide Glyphosate‐Biocarb®. ToxicologyLetters 2004; 153: 227‐232. 35. Benslama O, and Boulahrouf A.2013. Impact of glyphosate application onthe microbial activity of two Algerian soils. Int J Curr MicrobiolApp Sci.;2:628-35. 36. Bergstroem L, Boerjesson E, Stenstroem J.2011. Laboratory and lysimeter studies of glyphosateAnd aminomethyl phosphonic acid in a sand and a clay soil. Journal of Environmental Quality; 40: 98‐108. 37. Bernal, E. 2014. Limit of Detection and Limit of Quantification Determination in Gas Chromatography. P. 255. 38. Bhattacherjee. A.k., Gundappa and Dikshit ,A. (2017). HPLC-PDA Determination of Chlorpyrifos and Glyphosate Residues in Mango Orchard Soil and theirSubsequent Uptake to Mango Fruit. Pesticide Research Journal Vol. 29(2): 183-187. 39. Borggaard OK, Elberling B. (2004). Pedological Biogeochemistry. pp. 483. Paritas, Brøndby,Denmark. 40. Borggaard OK, Gimsing AL.2008. Fate of glyphosate in soil and the possibility of leaching to ground And surface waters: A review. Pest Management Science; 64: 441‐456. 41. Bothma, A. 2002. Alleopathic potential of silverleaf nightshade (Solanum elaeagnifolium Cav.) with the early growth of cotton (Gossypium hirsutum L.). the degree MSc (Agric) Agronomy, University of Pretoria.2006. 42. Bouhache M (2010) Solanum elaeagnifolium Cav.: a threat to agriculture and environment in Mediterranean region. Moroccan Journal of Plant Protection 1: 1–11.43. Bouhache, M., Laakari, A. & Hilali, S. (1996) Influence of environmental factors on the control of Solanum elaeagnifolium by glyphosate. Proceedings of the second international weed control congress, Copenhagen, Denmark, 25-28 June 1996: Volumes 1-4., 801-805. 44. Boukhris-Bouhachem, S., Hullé, M., Rouzé-Jouan, J., Glais, L., and Kerlan, C. (2007). Solanum elaeagnifolium, a potential source of Potato virus Y (PVY) propagation. EPPO Bulletin. 37(1):125–8. 45. Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analyses of soils .Agronomy journal,54(5), 464-465. 46. Boyd, J. W., Murray, D. S., & Tyrl, R. J. (1984). Silverleaf nightshade,Solanum elaeagnifolium, origin, distribution, and relation to man Economic Botany, 38(2), 210-217. 47. Boyd, J.W. and Murray, D.S. (1982). Growth and development of silverleaf nightshade (Solanum elaeagnifolium). Weed Science 30, 238-43. 48. Buck, W. B., Dollahite J. W. and Allen, T. J. 1960. Solanum elaeagnifolium, silver-leafed nightshade, poisoning in livestock. Journal of the American Veterinary Medical Association, 137: 348-351. 49. Buffin, D., Jewell, T.2001. Health and Environmental Impacts of Glyhosate.PesticideActionNetworkUK.Available at:http://www.foe.co.uk/sites/default/files/downloads/impactsglyphosate.pdf 50. Bunt, J. S. and A. D. Rovira. 1955. Microbiological studies of some subantarctic soil. J. Soil Sci., 6: 119-128.51. Busse MD, Ratcliff AW, Shestak CJ, and Powers RF.2000. Non-target effectsof glyphosate on soil microbes. In: Presented at the Proceedingsof the California Weed Science Society. 52. Busse, M.D., Ratcliff, A.W., and Shestak, C.J., 2001. Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biol. Biochem. 33 (12–13), 1777–1789. 53. Cabrices OG, Schreiber A.2007.Automated derivatization, Cleanup SPE and LC/MS/MS Determination of glyphosate and Other Polar Pesticides. Anal Chem.;79:3794–3801. 54. Cakmak I, Yazici A, Tutus Y, Ozturk L. 2009. Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in nonglyphosate resistant soybean. European Journal of Agronomy 31, 114–119. 55. California Department for Food and Agriculture (2006) California(US).http://www.cdfa.ca.gov/phpps/ipc/weedinfo/solanum-carolinense. htm 56. Camacho A, Mejía D.2017. The health consequences of aerial spraying illicit crops: The case of Colombia. Journal of Health Economics; 54: 147‐160. 57. Candela, L., J. Álvarez-Benedí, M.C. De Melo and P. Rao. 2007. Laboratory studies on glyphosate transport in soils of the Maresme area near Barcelona, Spain: transport model parameter estimation, Geoderma 140, 8–16. 58. Caseley JC, Coupland D. (1985). Environmental and plant factors affecting glyphosate uptake,movement and activity. pp. 92-123. In The Herbicide Glyphosate.E. Grossbard and D. Atkinson (eds.).Buttenworths & Co., Ltd. London, UK.59. Cessna, A. J. and , N. P. Cain. 1992. Residues of glyphosate and its metabolite AMPA in strawberry fruit following spot and wiper applications. Can. J. Plant Sci. 72: 1359-1365. 60. Chakravarty P, and Chatarpaul L. 1990. Non-target effect of herbicides.I. Effect of glyphosate and hexazinone on soil microbial activ-ity. Microbial population, and in-vitro growth of ectomycorrhizalfungi. Pestic Sci.;28:233-41. 61. Cheng F., Cheng Z., 2015. Research Progress on the useof Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms ofAllelopathy. Front. Plant Sci. 6:1020. 62. Chiale, A., Cabrera J. L. and Juliani, H. R. 1991. Kaempferol 3-(6”-czs-cinnamoyl glucoside) from Solanum elaeagnifolium. Phytochemistry. 30: 1042-1043. 63. Christodoulakis, N. S., Lampri, P. N., & Fasseas, C. (2009). Structural andcytochemical investigation of the leaf of silverleaf nightshade (Solanum elaeagnifolium), a drought-resistant alien weed of the Greek flora. Australian Journal of Botany, 57(5), 432-438. 64. Cobb A. 1992. Herbicides and plant physiology . London: Chapman and Hall. 65. Cobb and Reade JP.2010.The inhibition of amino acid byiosynthesis .IN:Cobb AH,Read JP.,eds.Herbicides and plant physiology .Wiley –Blackwell,176-197. 66. Cole DJ. (1985). Mode of action of glyphosate - A literature analysis. pp. 48-74.In The Herbicide Glyphosate. (eds.) E. Grossbard and D. Atkinson. Buttenworths & Co., Ltd. London, UK. 67. Cooley, A. M. and D. T. Smith.1973. Silverleaf Nightshade (White Weed) Establishment From Seed and Clipped Seedling.Consolidated Progress Reports, Weed and Herbicide Research in West Taxas. P 6-9. 68. Coupland, D. and Caseley, J. C. 1979. Presence of 14c activity in root exudates and guttation fluid from Agropyron Repens treated with 14c-labelled glyphosate. New Phytologist, 83(1), 17–22. 69. Danieri, P.; S. M. Zedaker; J. R. Seiler and R. F. Kreh.1990. Glyphosate Translocation and Efficacy Relatioships in Red Maple, Sweetgum and Loblolly Pine Seedlings. Forest Science. 36 (2): 438-447. 70. Debnath,B. Amal Debnath and Chiranjit Paul (2016). Alelopathic effects of invasive weed (SOLANUM SISYMBRIIFOLIUM LAMK.) on germination and seedling growth of four widely cultivated indian crops . I.J.S.N., vol.7 (1): 194-198 71. Delgado M.M., Martin J.V., De Imperial R.M., Leon-Cofreces C., Garcia M.C., (2010), Phytotoxicity of in composted and composted poultry manure, African Journal of Plant Science, 4, 154-162. 72. Dick, R. E.; Quinn, J. P. Glyphosate degrading isolates from environmental samples: occurrence and pathways of degradation. Appl Microbiol. Biotechnol. 1995, 43, 545–550. 73. Dill GM.2005.Glyphosate‐resistant crops: history, status and future. Pest management science ; 61: 219‐224. 74. Dotray, P.A. and Keeling, J.W. (1996). Silverleaf nightshade (Solanum elaeagnifolium) control in cotton with glyphosate at reduced rates. Texas Journal of Agriculture and Natural Resources 9:33-41.75. Duke SO, Lydon J, Koskinen WC, Moorman TB, Chaney RL, and Ham-merschmidt R. 2012. Glyphosate effects on plant mineral nutrition,crop rhizosphere microbiota, and plant disease in glyphosate-resistant crops. J Agric Food Chem.;60:10375-10397. 76. Duke, S.O. 2012. Why Have No New Herbicide Modes of Action Appeared in Recent Years?Pest Management Science, 68(4):505-512. 77. Duke, S.O., Powles SB. 2008. Glyphosate: a once-in-a-century herbicide. Pest Management Science 64, 319–325. 78. Durkin, P.R. 2003. Glyphosate - Human health and ecological risk assessment report. Syracuse Environmental Research Associates Inc, Fayetteville NY. 79. EINHELLIG, F.A., 1986. Mechanism and mode of action of allelochemicals. In A.R. Putnam & C.S. Tang, (eds). The Science of Allelopathy, pp 171-188. Wiley, New York. 80. EINHELLIG, F.A., 1995. Mechanism of action of allelochemicals inallelopathy. In Inderjit, et al, (eds). Allelopathy : organisms, Processes and Applications, pp. 96-116. ACS Symp. Ser. 582. Am.Chem. Soc., Washington, DC. 81. EINHELLIG, F.A., RASMUSSEN, J.A., HEJL, A.M. & SOUZA, I.F., 1993.Effects of root exudate sorgoleone on photosynthesis. J. Chem. Ecol. 19, 369-375. 82. EINHELLIG, F.A.8118.The physiology of allelochemical action: Clues and Viewa. In: REIGOSA, M.; PEDROL, N. (Ed.). Allelopathy from Molecules to Ecosystems. Vigo: Universidade de Vigo, p.1-23.83. El-Gendy,K.,E. Mosallam, N. Ahmed and N. Aly. 2018. Determination of glyphosate residues in Egyptian soil samples. Analytical Biochemistry 557, 1–6. 84. El-Gengaihi, S.E., H.A. Osman, M.M.A. Youssef and S.M. Mohamed. 2001. Efficacy of Tagetes species extracts on the mortality of the ereniform nematode, Rotylenchulus reniformis. Bull NRC, Egypt, 26,p. 441–450. 85. Elisante .F., Tarimo. M. T., Ndakidemi .P. A.(2013). Allelopathic Effect of Seed and Leaf Aqueous Extracts of Datura stramonium on Leaf Chlorophyll Content, Shoot and Root Elongation of Cenchrus ciliaris and Neonotonia wightii. American Journal of Plant Sciences, 4, 2332-2339. 86. EPPO, (2007). Solanum elaeagnifolium. Datasheets on Quarantine Pests. European and Mediterranean Plant Protection Organization (EPPO). Bulletin OEPP/EPPO Bulletin, 37(2):236-245.http://www.eppo.int/QUARANTINE/data_sheets/plants/Solanum_elaeagnifolium_DS.pdf 87. EPPO, (2014). PQR database. Paris, France: European and MediterraneanPlant-ProtectionOrganization. http://www.eppo.int/DATABASES/pqr/pqr.htm 88. ESYD G-FYTOPROST. 2016. Guidance document on method validation and quality control procedures for pesticides residues laboratories. 1- 36. 89. EURACHEM. 1998. The Fitness for purpose of analytical methods. A Laboratory guide to method validation and related topics, LGC, Queens Rd, Teddington. pp. 23-28. 90. European Commission. 2002. Report for the active substance glyphosate, directive 6511/VI/9. 2011:56-15.91. European commission. 2007. Report of Pesticide Residue Monitoring Results of the Netherlands for 2007 Concerning Directive 90/642/EEC, 86/362/EEC and Recommendation 2007/225/EC. http://www.vwa.nl/cdlpub/servlet/CDLServlet?p_file_id=32803. 92. FAO/WHO (Food and Agriculture Organization/World Health Organization). Food Standards Programme. 2017. Pesticide residues in food . Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues Rome, Italy. 93. Fathy El- Said, R. M. 2012. Control of root rot of chickpea caused by Sclerotium rolfsii by different agents and gamma radiation. A thesis submitted to Faculty of Science – Tanta University In partial fulfillment of the requirements for the degree of master in Microbiology (Mycology). Botany Department. Faculty of Science. Tanta University, p. 270. 94. Feng, J.C, Thompson, D.G., Reynolds, P.E.1990. Fate of Glyphosate in a Canadian Forest Watershed. 1. Aquatic Residues and Off-Target Deposit Assessment. Journal of Agriculture and Food Chemistry; 38:1110-8. 95. Fisher, R.S., Berry, A, Greg-Gains, G. and Jenson, R.A. 1984. Comparative action of glyphosate as a trigger of energy drain in Eubacteria. J Bacteriol 168: 1147–1154. 96. Forlani, G., Mangiacalli, A., Nielsen, E., and Suardi, C.M., 1999. Degradation of the phosphonate herbicide glyphosate in soil: evidence for a possible involvement of unculturable microorganism. Soil Biol. Biochem. 31 (7), 991–997.97. Franz, J.E., M.K. Mao and J.A. Sikorski. 1997. Glyphosate: a Unique Global Herbicide, American Chemical Society, pp. 65–97. 98. Gasnier C, Dumont C, Benachour N, Clair E, Chagnon M‐C, Séralini G‐E.2009. Glyphosate‐based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology; 262:184‐191. 99. Gavrilescu M, Demnerova K, Aamand J, Agathos S, Fava F. 2014. Emergingpollutants in the environment: present and future challenges in biomonitoring,ecological risks and bioremediation. New biotechnology 32, 147-156. 100. Gerritse RG, Beltran J, Hernandez F. (1996). Adsorption of atrazine, simazine, and glyphosate in soils of the Gnangara Mound, Western Australia. Aust. J. Soil Res.34:599-607. 101. Giesy JP, Dobson S, Solomon KR.2000. Ecotoxicological risk assessment for Roundup® herbicide.Reviews of Environmental Contamination and Toxicology; 167: 35‐120. 102. Gmira, N.; A. Douira and M. Bouhache.1998. Ecological Grouping of Solanum elaeagnifolium: a Principal Weed in The Irrigated Tadla Plain (Central Morocco). Weed Research. 38 (2): 87-94. {a} Lab. Bot. ď Ecol. Veg., Fac. Sci. BP 133, Kenitra, Morocco. 103. Gougler JA, Geiger DR (1981). Uptake and distribution of N-phosphonomethylglycine in sugar beetplants. Plant Physiol. 68:668-672. 104. Gui Y‐x, Fan X‐n, Wang H‐m, Wang G.2012. Glyphosate induced cell death through apoptotic andautophagic mechanisms. Neurotoxicology and teratology; 34: 344‐349. 105. Guillerm, J. L.; E. Floch; J. Maillet and C. Boulet.1990. The Invading Weeds Withen The Mediterranean Basin. BiologicalInvasions in Europe and The Mediterranean Bassin. Kluwer Academic Publishers. P 61-84. 106. Hall CA, Hobby T and Cipollini M. 2006. Efficacy andmechanisms of α-solasonine and α-solamargine-inducedcytolysis on two strains of Trypanosoma cruzi. J Chemical Ecol 32: 2405-2416 107. Haney, R., S. Senseman and F. Hons. 2002. Effect of roundup ultra on microbial activity and biomass from selected soils. Journal of Environmental Quality, 31: 730-735. DOI: 10.2134/jeq2002.7300 108. Hansing, E.D. 1978. Techniques for evaluating seed treatment fungicides, pp. 85-92. In Methods for Evaluating Plant Fungicides, Nematicides, and Bactericides. The American Phytopatholgical Society, St. Paul. Minnesota. 109. Hare, J.D. (1990). Ecology and management of the Colorado potato beetle. Annual Review of Entomology 35, 81–100. 110. Hawker, V., Preston, C. & Baker, J. (2004) Controlling silverleaf nightshade (Solanum elaeagnifolium Cav.), a deep rooted perennial weed, with herbicides and grazing. Fourteenth Australian Weeds Conference. Weed Society of NSW. 111. Heap, J. W. (1992) Golden dodder and silverleaf nightshade- Study tour to USA. Adelaide, Department of Agriculture SA. 112. Heap, J.W. & Carter, R.J. (1999) The biology of Australian weeds: 35. Solanum elaeagnifolium Cav. Plant Protection Quarterly, 14, 2-12. 113. Hébert. M.P., Fugère .V., and Gonzalez. A.(2019).The overlooked impact of rising glyphosate use on phosphorus loadingin agriculturalwatersheds. Front Ecol Environ 2019; 17(1): 48–56, doi:10.1002/fee.1985 114. Helander, M., A. Pauna, K. Saikkonen2 and I. Saloniemi. 2019. Glyphosate residues in soil affect crop plant germination and growthScientific Reports. 9:19653 , https://doi.org/10.1038/s41598-019-56195-37. 115. Herna´Ndez, L. F., C. Hidalgo and J. V. Sancho. 2000. Determination of Glyphosate Residues in Plants by Precolumn Derivatization and Coupled-Column Liquid Chromatography with Fluorescence Detection. J. of AOAC International, V. 83, NO. 3, 728-734. 116. Heu C, Elie‐Caille C, Mougey V, Launay S, Nicod L.8108. A step further toward glyphosate‐induced epidermal cell death: involvement of mitochondrial and oxidative mechanisms. environmental toxicology and pharmacology; 34: 144‐153. 117. Hoskins, W. M.1961. Mathematical Treatment of the Rate of loss of Pesticide Residues. FAO Plant Protection Bulletin Vol.9, No.9 pp.163-168. 118. Houot, S, Topp, E, Yassir, A. and G. Soulas. 2000. Dependence of accelerated degradation of atrazine on soil pH in French and Canadian soils. Soil Biol Biochem 32: 615–625. 119. Huang J, Silva EN, Shen Z, Jiang B, Lu H. 2012. Effects of glyphosate on photosynthesis, chlorophyll fluorescence and physicochemical properties of cogongrass (Imperata cylindrical L.). Plant Omics Journal 5, 177–183. 120. Huber, D. 2007. Strategies to ameliorate glyphosate immobilization of mn and its impact on disease. Phytopathology 97:S168-S168.121. Huenneke, L.F. and Vitousek, P.M. (1990). Seedling and clonal recruitment of the invasive tree Psidium cattleianum: implications for management of native Hawaiian forests. Biol. Conserv. 53:199–211 122. ICH. 1996. Validation of Analytical Procedure: Methodology: International Conference on Harmonisation ofTechnical Requirements for Registrationof Pharmaceuticals for Human Use.pp.207-214. 123. Inderjit, K.I. Keating.1999. Allelopathy: principles, procedures, processes, and promises for biological control.Advances in Agronomy.67, 141-231. 124. Jodeh. S., Attallah .M., Haddad .M., B. Hadda. T., Salghi. R., Jodeh. D., Warad. I. (2014). Fate and Mobility of Glyphosate Leachate in Palestinian Soil Using Soil Column., J. Mater. Environ. Sci. 5 (6) 2008-2016. 125. Johal GS, and Huber DM. 2009. Glyphosate effects on diseases of plants. European Journal of Agronomy 31, 144–152. 126. Joret, G. and J. Hébert. 1955. Contribution à la détermination du besoin des sols en acide phosphorique.Ann. Agron,2, 233-299. 127. Joy, B.L., Keeling, J.W., and Dotray, P.A. (2008). Weed management in enhanced glyphosate-resistant cotton. Texas Journal of Agriculture and Natural Resources. 21:1- 13. 128. Kamdem,M.M, Yanou,N.N, and Filser.J. 2016. Effects of soil treated glyphosate on growth parameters and chlorophyll content of maize Zea mays L. and bean Phaseolus vulgaris L. plants., Brazilian Journal of Biological Sciences, v. 3, no. 6, p. 351-365. 129. Kaufman, D.D., Katan, J., Edwards, D.F. and E . G. Ordan .1985. Microbial adaptation and metabolism of pesticides. AgricultureChemicals of the Future (Hilton JL, ed.), Rowman and Allanheld, Totowa, USA. 130. Keeler, R. F., Baker, D. C. and Gaffield, W. 1990. Spirosolane-containing Solanum species and induction of congenital craniofacial malformations. Toxicon, 28: 873-884. 131. Kertesz, M.A., Cook, A.M. and T. Leisinger. 1994. Microbial metabolism of sulfur and phosphorus-containing xenobiotics. FEMS Microbiol Rev 15: 195–215. 132. Khanas, M.1996. Etude de la Variabilité Morphplogique et Cytologique Chez les Populations á Fleurs Violette et Blanch de la Morelle Jaune (Solanum elaeagnifolium Cav.) Dans le Tadla. Doctorat de Troisieme Cycle. Université Mohammed V, Fac. Scie. Rabat. 133. Khrolenko, M.V. and P.P. Wieczorek, 2005. Determination of glyphosate and its metabolite aminomethylphosphonic acid in fruit juices using supported-liquid membrane preconcentration method with high performance liquid chromatography and UV detection after derivatization with p-toluenesulphonyl chloride, J. Chromatogr. A 1093, 111–117. 134. Kidston, J., Thompson, R., & Johnson, A. (2007). Silverleaf nightshade.Primefact 237 Retrieved 10 June 2010, fromhttp://www.dpi.nsw.gov.au/__data/assets/pdf_file/0008/90890/silver leaf-nightshade.pdf. 135. KleffmannGroup. Mercado argentino de productos fitosanitarios, 2012. CASAFE ‐ Empresas de tecnología para la protección de los cultivos., Buenos Aires, Argentina, 2014. 136. Kleier, D. A. 1995. Environmental effects on the photodegradation of pesticides. Frnham, UK, British Crop Protection Council, 97 -109.137. Klimek, M, Lejck, B, Kafarski, P and G. Forlani. 2001 Metaboilism of the phosphonate herbicide glyphosate by a non-nitrateutilising strain of Penicillium chrysogenum. Pest Mang Sci 57: 815–821. 138. Krause. M. S., Duarte .A. F. S., Merino .F. J. Z., Paula .C. S., Miguel. M. D., Miguel .O. G .(2016). Phytotoxic Analysis of Extract of Leaves of Solanum megalochiton Mart. Solanaceae on Lactuca sativa L. and Allium cepa L.International Journal of science volume (5)-november (11). 139. Kremer RJ, Means NE, Kim S. 2005. Glyphosate affects soybean root exudation and rhizosphere microorganisms. International Journal of Analytical Environmental Chemistry, 85, 1165–1174. 140. Krenchinski F. H., Albrecht L. P., Albrecht A. P., Cesco .,V. J. S., Rodrigues D. M., Portz R. L., S.Zobiole L. H. (2017). Glyphosate affects chlorophyll, photosynthesis and water use of four Intacta RR2 soybean cultivars. Acta Physiol Plant .39-63. 141. KRZYOEKO-£UPICKA. T., KRÊCID£O£. and KOSZA£KOWSKA. M. (2015). THE ABILITY OF SELECTED BACTERIATO GROW IN THE PRESENCE OF GLYPHOSATE, ECOL CHEM ENG .22(2):185-193. 142. Krzysko-Lupicka T, and Sudol T.2008. Interactions between glyphosateand autochthonous soil fungi surviving in aqueous solution ofglyphosate. Chemosphere. ;71:1386-1391. 143. Krzysko-Lupicka, T., W. Strof, K. Kubs, M. Skorupa, P. Wieczorek and B. Lejczak. 1997. The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl. Microbiol. Biotechnol. 48:549-552.144. Kuster, F. and S. T. Williams. 1964. Selection of media for isolation of streptomycetes. Nature 202: 928. 145. Kwiatkowska M, Reszka E, Woźniak K, Jabłońska E, Michałowicz J, Bukowska B.2017. DNA damageand methylation induced by glyphosate in human peripheral blood mononuclear cells (in vitro study). Food and Chemical Toxicology ; 105: 93‐98. 146. Laakari, A.1996. Influence de Certains Facteurs sur le Control Chimique de la morelle Jaune (Solanum elaeagnifolium Cav.). D. E. S. Doctorat de 3éme Cycle. Fac. Des Sciences Semlalia. Marrakech, Maroc. 147. Laitinen P, Rämö S, Siimes K. 2007. Glyphosate translocation from plants to soil – does this constitute a significant proportion of residues in soil? Plant and Soil, 300, 51–60. 148. Laitinen, P., S. Rämö, U. Nikunen, L. Jauhiainen, K. Siimes and E. Turtola. 2009. Glyphosate and phosphorus leaching and residues in boreal sandy soil, Plant Soil. 323, 267–283. 149. Lancaster, S.H., E.B. Hollister, S.A. Senseman and T.J. Gentry. 2010. Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Manag. Sci. 66:59-64. 150. Legris, J, Couture G.1998. Residues de glyphosate dans le sol forestier suite a des pulverizations terrestres en 1985 et 1986. Gouvernement du Quebec Ministere de l'Energie et des Ressources Direction de la Conservation. :22p. 151. Lewis KA, Tzilivakis J, Warner DJ, Green A.8106. An international database for pesticide risk Assessments and management. Human and Ecological Risk Assessment: An International Journal 22: 1050‐1064.152. Leys, A.R. and Cuthbertson, E.G. (1977). Solanum elaeagnifolium Cav. (silverleaf nightshade) in Australia.Proceedings of the Southern Weed ScienceSociety 30, 137-41. 153. Liebman, M., Baraibar, B., Buckley, Y., Childs, D., Christensen, S., Cousens, R., Eizenberg, H., Heijting, S., Loddo, D., Merotto Jr, A. and Renton, M., 2016. Ecologically sustainable weed management: How do we get from proof‐of‐concept to adoption? Ecological Applica-tions, 26, 1352-1369. 154. Lipok. J., Dombrovska, L, Wieczorek P and Kafarski. 2003. The ability of fungi isolated from stored carrot seeds to degrade organophosphonate herbicides. Pesticide in Air, Plant, Soil and water System (Del Re AAM, Capri E, Padovani L &Trevisan M, eds), Proceeding of the XII Symposium Pesticide Chemistry, Piacenza, Italy. 155. Liu, C., P. McClean, C. Sookdeo and F. Cannon. 1991. Degradation of the herbicide glyphosate by members of the family rhizobiaceae. Appl. Environ. Microbiol. 57:1799-1804. 156. Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum.Methods of soil analysis: part 3 chemical methods, 5, 437-474. 157. Lungu, L., Popa, C. V., Morris, J., Savoiu,M. 2011. Evaluation of phytotoxic activity of Melia azedarach L. extracts on Lactuca sativa L. Romanian Biotechnological, Vol. 16, No. 2, 2011. 6089-6095. 158. Lupwayi N, Harker K, Clayton G, O’Donovan J, and Blackshaw R. 2009. Soilmicrobial response to herbicides applied to glyphosate-resistantcanola. Agric Ecosyst Environ.;129:171-176. 159. Majek BA. (1980). The effect of environmental factors on quackgrass [Agropyron repens (L.) Beauv.]growth and glyphosatepenetration and translocation. Ph.D. Dissertation, Cornell University. Ithaca,NY. 160. Mamy, L. and E. Barriuso. 2005. Glyphosate adsorption in soils compared to herbicides replaced with the introduction of glyphosate resistant crops, Chemosphere 61, 844–855. 161. Maqueda C, Undabeytia T, Villaverde J, Morillo E.2017. Behaviour of glyphosate in a reservoir and The surrounding agricultural soils. Science of The Total Environment ; 593: 787‐795. 162. MARASCHIN-SILVA, F.; AQUILA, M.E.A.8116. Potencial alelopático de espécies nativas na germinação e crescimento inicial de Lactica sativa L. (Asteraceae). Acta botanica Brásílica, v. 20, n. 1, p. 61-69. 163. Marsh HVJ, Evans HJ, Matrone G. 1963. Investigations of the role of iron in chlorophyll metabolism II. Effect of iron deficiency on chlorophyll synthesis. Plant Physiology 38, 638–642. 164. Martins, H. A., Daniel, T. Lebre, Alexandre Y. Wang, Maria A. F. Piresand Oscar V. Bustillos.2009. An alternative and fast method for determination of glyphosate and aminomethylphosphonic acid (AMPA) residues in soybean using liquid chromatography coupled with tandem mass spectrometry., Rapid Commun. Mass Spectrom.; 23: 1029–1034 165. Mateos-Naranjo E, Redondo-G mez S, Cox L, Cornejo J, Figueroa ME. 2009. Effectiveness of glyphosate and imazamox on the control of the invasive cordgrass Spartina densiflora. Ecotoxicology and Environmental Safety 72, 1694–1700. 166. Matocha, M. (1990). Crop Profile for Cotton in Texas. Texas AandM Agrilife Extension, Sept. agrilife.org/aes/.167. McLain, J., Castle, S., Holmes, G., and Creamer, R. (1998). Physiochemical characterization and field assessment of Lettuce Chlorosis Virus Plant Disease 82, 1248–1252. 168. McLean, E. O. 1983. Soil pH and lime requirement.Methods of soil analysis: Part 2 Chemical and microbiological properties,9, 199-224. 169. Means NE, Kremer RJ, Ramsier C. 2007. Effects of glyphosate andfoliar amendments on activity of microorganisms in the soybeanrhizosphere. J Environ Sci Health Part B.;42:125-432. 170. Mink PJ, Mandel JS, Sceurman BK, Lundin JI.2012. Epidemiologic studies of glyphosate and cancer: A review. Regulatory Toxicology and Pharmacology; 63: 440‐452. 171. Mkula N. P.. Allelopathic interference of silverleaf nightshade 172. Molnar, V.M. (1982). Final report on silverleaf nightshade(Solanum elaeagnifolium Cav.) field trials in the Victorian Mallee 1974–1980. Unpublished report (KTRI UR 1982/1), Keith Turnbull Research Institute, Vermin and Noxious Weeds Destruction Board, Frankston, Victoria, 70 pp. 173. Monquero PA, Christoffoleti PJ, Osuna MD, De Prado RA. 2004. Absorçمo, translocaçمo e metabolismo do glyphosate por plantas tolerantes e suscetيveis a este herbicida. Planta Daninha 22, 445–451. 174. Monsanto. 2014. Backgrounder: glyphosate and environmental fatestudies.StLouis,MO:Monsanto. https://monsanto. com/products /safety-information. Viewed 19 Nov 2018. 175. Morin F, Vera V, Nurit F, Tissut M, Marigo G. (1997). Glyphosate uptake in Catharanthus roseuscells: Role of a phosphate transporter. Pestic. Biochem. Physiol. 58:13-22.176. MULLER, W. H., 1986. Allelochemical mechanisms in the inhibition of herbs By chaparral shrubs. In A.R. Putnam & C.S. Tang (eds). pp. 189-199 . Wiley, N.Y. 177. Munira, S., Farenhorst, A., Flaten, D., and C. Grant .2016. Phosphate fertilizer impacts on glyphosate sorption by soil.Chemosphere,153, 471-477. 178. Nather,O.O., Abiodun J.M. 2015. Analysis of Pesticide Residues in Agricultural Soil Using High Performance Liquid Chromatography (HPLC)., International Journal of Science and Research (IJSR) .ISSN (Online): 2319-7064 179. Neumann, G., S. Kohls, E. Landsberg, K. Souza, T. Yamada and V. Roemheld. 2006. Relevance of glyphosate transfer to non-target plants via the rhizosphere. Journal of Plant Diseases and Protection Sp. Iss. 20:963-969. 180. Newton M, Horner LM, Cowell JE, White DE, Cole EC.1994. Dissipation of glyphosate and aminomethylphosphonic acid in North American forests. Journal of Agricultural and Food Chemistry. 42(8):1795-802. 181. Nigussie, T., Saraswathi, M., Mama, A., & Bale, E. 2019. Impact of Glyphosate on Agricultural Soil Quality in Sinana Woreda, South Eastern Ethiopia. 182. Nivellea. E., Verzeauxa. J., Chabotb A., Rogera. D.,. Chesnaisa. Q, A.Amelinea , Lacouxa. J., Edmundo. J., Saucedoa .N., Tétua. Th., Catteroua. M. (2018) .Effects of glyphosate application and nitrogen fertilization on the soil and the consequences on aboveground and belowground interactions. Geoderma 311 ,45–57. 183. Njoku. K. L., Eludini .P. O., Adesuyi .A. A., Ude .E. O., Oyelami. A. O. (2020). Physiological and Molecular Characterization ofActiveFungi in Pesticides Contaminated Soils for Degradation ofGlyphosate.Sustainable Environment Research,1-25. 184. Nomura, N.S., Hilton, H.W., The adsorption and degradation of glyphosate in five Hawaiian sugarcane soils. Weed Res. 1977. 17:113–121. 185. Obojska, A, Ternana NG, Lejczak B, Kafarski P & McMullan P .2002. Organophosphate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol 68: 2081–2084. 186. Oliver, R. G. 1996. An investigation into the analysis of the herbicide glyphosate in the environment. PhD thesis. University of Glasgow http://theses.gla.ac.uk/4827/ 187. ORTEGA, R.C., ANAYA, A.L. & RAMOS, L., 1988. Effects of allelopathic compounds of corn pollen on respiration and cell division of watermelon. J. Chem. Ecol. 14, 71-86. 188. Panawala. L.,2017. Difference Between Chlorophyll A and B. https://www.researchgate.net/publication/316584030 189. Parsons, W.T. & Cuthbertson, E.G. (2001) Noxious weeds of Australia, Victoria, CSIRO Publishing. 190. Patrock, R.J. and Schuster, D.J. (1992). Feeding, oviposition and development of the pepper weevil, (Anthonomus eugenii Cano), on selected species of Solanaceae.Tropical Pest Management 38,65–69. 191. Pavel,V. L., D. L. Sobariu, M. Diaconu, F. Stătescu1, M. Gavrilescu. 2013. Effects of heavy metals on lepidium sativum germination and growth. Environmental Engineering and Management Journal. Vol.12, No. 4, 727-733. 192. Penaloza-Vazquez, A., Mena, G.L., Herrera-Estrella, L. and Bailey, A.M. 1995. Cloning and Sequencing of the genes involvedin glyphosate utilization by Pseudomonas pseudomallei. Applied Environmental Microbiology 61(2): 538-543. 193. Piccolo, A. G. Celano and P. Conte. 1996. Adsorption of glyphosate by humic substances, J. Agric. Food Chem. 44 , 2442–2446. 194. pimentel, D., Zuniga, R., and Morrison, D. 2005. Up-date on the environmental and economic costs associated with alien-invasive species in the United States. Ecological economics, 52, 273-288. 195. Pizzul L, del Pilar Castillo M, and Stenström J.2009. Degradationof glyphosate and other pesticides by ligninolytic enzymes.Biodegradation.;20:751-759. 196. Pline, W. A.; Wilcut, J. W.; Duke, S. O.; Edmisten, K. L.; Wells, R.2002. Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate-resistant and nonglyphosate-resistant cotton (Gossypium hirsutum L.). J. Agric. Food Chem., 50, 506–512. 197. Poiger, T., I.J. Buerge, A. Bächli, M.D. Müller and M.E. Balmer. 2017. Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with on-line solid phase extraction LC-MS/MS, Environ. Sci. Pollut. Res. Int. 24, 1588–1596. 198. Pongraveevongsa, P., M.S., W. Khobjai, , P. Wunnapuk, M.D.2008. Sribanditmongkol 2008. High-Performanc Liquid Chromatography / Uv Detection For Determination Of Glyphosate In Serum and Gastric CONTENT., Chiang Mai Medicall Journal;47(4):155-162. 199. Pothuluri, J.V., Heflich RH, Fu PP and Cerniglia CE (1992) Fungal metabolism and detoxification of fluoranthene. Appl Environ Microbiol 58: 937–941.200. Pothuluri, JV, Chung YC & Xiong Y .1998. Biotransformation of 6-nitrochrysene. Appl Environ Microbiol 64: 3106–3109. 201. Primost JE, Marino DJG, Aparicio VC, Costa JL, Carriquiriborde P.2017. Glyphosate and AMPA, “pseudo‐persistent” pollutants under real‐world agricultural management practices inthe Mesopotamic Pampas agroecosystem, Argentina. Environmental Pollution;229: 771‐779. 202. Qian, K., T. Tang, T. Shi, F. Wang, J. Li and Y. Cao. 2009. Residue determination of glyphosate in environmental water samples with high performance liquid chromatography and UV detection after derivatization with 4-chloro-3,5-dinitrobenzotrifluoride, Anal. Chim. Acta 635, 222–226. 203. Qin H, Wang H, Strong PJ, Li Y, Xu Q, and Wu Q.2014. Rapid soilfungal community response to intensive management in a bam-boo forest developed from rice paddies. Soil Biol Biochem;68:177-184. 204. Quinn, J.P, Peden, J.M.M. and R.E. Dick. 1989. Carbon-phosphorus bond cleavage by gram-positive and gram-negative soil bacteria. Appl Microbiol Biotechnol 31: 283–287. 205. Ramachandran .A.(2017). Allelopathic Effects of Aqueous Leaf Extracts of Datura metel L. on Parthenium hysterophorus L. Agri Res & Tech: Open Access J 10(1): ARTOAJ.MS.ID.555779 206. Ramona.S., Maria. I., Cărăbtt. A., Ioana. G., Maria. V. A., Manea .A (2018). Allelopathic influence of Datura stramonium extracts on the germination and growing of soy plants. JOURNAL of Horticulture, Forestry and Biotechnology, Volume 22(2), 30- 33. 207. Ratcliff AW, Busse MD, and Shestak CJ.2006. Changes in microbial com-munity structure following herbicide (glyphosate) additions toforest soils. Appl Soil Ecol. ;34:114-124.208. Rayment, G. E. and D. J. Lyons. 2011.Soil chemical methods: Australasia. (Vol. 3). CSIRO publishing. 209. Reddy KN, Rimando AM, Duke SO. 2004. Aminomethylphosphonic cid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. Journal of Agricultural and Food Chemistry, 52, 5139–5143. 210. Rhoades, J. D. 1993. Electrical conductivity methods for measuring and mapping soil salinity.Advances in agronomy,49, 201-251. 211. RICE, E.L., 1984. Allelopathy. 2nd edition. Academic Press, New York. 212. Ricordi A, Tornisielo V, Almeida G. 2007. Transloction 14C-glifosatonate entre Brachiaria brizantha e mudas de café (Coffea arabia) e citros (Citrus limonia Osbeck). In: Anais do simp sio internacional sobre glyphosate . Botucatu, Brazil FCA-UNESP, 307–310. 213. Roche, C.1991. Silverleaf Nightshade (Solanum elaeagnifolium Cav.) Pacific Northwest Extension Publication 365. 214. Rubio, F., L.J. Veldhuis, B.S. Clegg, J.R. Fleeker and J.C. Hall,8113 Comparison of a direct ELISA and an HPLC method for glyphosate determinations in water, J. Agric. Food Chem. 51, 691–696. 215. Rueppel, M., B. Brightwell, J. Schaefer and J. Marvel. 1977. Metabolism and degradation of glyphosate in soil and water. J. Agric. Food Chem. 25:517-528. 216. Rueppel,L;Brightwell,B.B;Schaefer.,J.JandMarvel.TJ.1997. Metabolism and degradation of glyphosate in soil and water.J.Agric.Food chem.25:517-528.217. Sanco. 2011. Method validation and quality control procedures for pesticide residue analysis in food and feed. Document no. 12495/2011, 8:15. 218. SANTOS, J. B. et al.2004. Efeitos de diferentes formulaoes comerciais de glyphosate sobre estirpes de Bradyrhizobium. Planta Daninha, v. 32, n. 2, p. 293-299,. 219. Satchivi NM, Wax LM, Stoller EW, Briskin DP. 2000. Absorption and translocation of glyphosate isopropylamine and trimethylsulfonium salts in Abutilon theophrasti and Setaria faberi. Weed Science 48, 675–679. 220. Sebiomo, A., Ogundero, V. W. and S.A. Bankole. 2011. Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. African journal of biotechnology,10(5), 770-778. 221. Sforza R, Jones WA.2007. Potential for classical biocontrol of silverleaf nightshade in the Mediterranean Basin. OEPP/EPPO Bulletin; 37:156-162. 222. Sharifi. Y., Pourbabaei .A. A., Javadi. A., Abdolmohammadi .M. H., Saffari. M., Morovvati A. (2015). Biodegradation of glyphosate herbicide by Salinicoccus spp isolated from Qom Hoze-soltan lake, Iran. Environmental Health Engineering and Management Journal , 2(1), 31–36. 223. Sharma, A. K. 2002.Biofertilizers for sustainable agriculture. India.: Agrobios. Vol. 12, p. 319-324. 224. Siehl D. 1997. Inhibitors of EPSPS synthase, glutamine synthetase and histidine synthesis. In: Roe R, Burton J, Kuhr R, eds. Herbicide activity: toxicology, biochemistry and molecular biology . Amsterdam: IOS Press, 37–67.225. Sileshi, G., Schroth, G., Rao, M.R., Girma, H., 2008. Weeds, diseases, insect pests and tri-trophic interactions in tropical agroforestry. In: Batish, D.R., Kohli, R.K., Jose, S., Singh, H.P. (eds) Ecological basis of agroforestry. CRC Press, Boca Raton, FL, pp 73–94. 226. Silva V, Montanarella L, Jones A, Fernández‐Ugalde O, Mol HGJ, Ritsema CJ, et al.2018. Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Science of The Total Environment; 621: 1352‐1359. 227. SILVA, T.; CARVALHO, M. & BRAZ-FILHO, R.2003. Ocorrencia de flavonas, flavonóis e seus glicosideos em especies do genero Solanum (Solanaceae). Química Nova, n. 26, v. 4, p. 517-522. 228. Simonsen, L., I.S. Fomsgaard, B. Svensmark and N.H. Spliid. 2008. Fate and availability of glyphosate and AMPA in agricultural soil, J. Environ. Sci. Health B 43, 365–375. 229. Singleton .J.,V. Mendu B.S., Chen .J.., Chen J. (2019). Role of genetic diversity in the adaptive success of silverleaf nightshade (Solanum elaeagnifolium) under variable environmental pressures. MASTER OF SCIENCES.,pp1-71 230. Snell, K. (2003) Integrated Management of Silverleaf Nightshade. Notes from weed management workshop. Bendigo Victoria, DPI. 231. Sondhia.,S.2008.S.Persistence of metsulfuron-mythyl in wheat crop and soil.Envirom.Monit And Assess.147:463-469. 232. Sordona, R.M. 1978. Screening fungicides for seed and seedling disease control in plug mix planting, pp. 92 - 95. In Methods forEvaluating Plant Fungicides, Nematicides, and Bactericides. The American Phytopatholgical Society, St. Paul. Minnesota. 233. SOSEBEE, R. E. (1983). Physiological, phenological and environmental consideration inbrush and weed control p. 27-63. In. K. C. McDANEL (ed.), Range Manage., Alburquerque,NM. 234. Soti. P., John A. G. A. Racelis(2020). Agricultural and Environmental Weeds of South Texas and their Management. Subtropical Agriculture and Environments 71:111 235. Souza, A.P., Ferreira, F.A., Silva, A.A., Cardoso, A.A. and Ruiz, H.A., 1999. Respirac_~ao microbiana do solo sob doses de glyphosate e de imazapyr. Planta Daninha 17 (3), 387–398. 236. Sprankle, P., Meggitt, W.F. and Penner, D., 1975. Adsorption, mobility, and microbial degradation of glyphosate in the soil. Weed Sci. 23 (3), 229–234. 237. Stalikas, C.D. and C.N. Konidari . 2001. Analytical methods to determine phosphonic and amino acid group containing pesticides, J. Chromatogr. a 907 , 1–19. 238. Stanton, R., Wu, H., Lemerle, D., 2011. Root regenerative ability of silverleaf nightshade (Solanum elaeagnifolium Cav.) in the glasshouse. Plant Prot. Q. 26, 54e56. 239. Stanton, R.A., Heap, J.W., Carter, R.J., Wu, H. (2009). Solanum elaeagnifolium. In: Panetta FD (ed) The biology of Australian weeds, vol 3. R. G. and F. J. Richardson, Melbourne, pp 274–293. 240. Steinmann HH, Dickeduisberg M, and Theuvsen L. Uses and ben-efits of glyphosate in German arable farming. Crop Prot.2012;42:164-9.241. STILES, L.H., LEATHER, G.R. & CHEN, P.K., 1994. Effects of two sesquiterpene lactones isolated from Artemesia annia on physiology of Lemna minor. J. Chem. Ecol. 20, 969-978. 242. Stow CA,Dyble J,Kashian DR,ET AL.,2014.Phosphorus targests and eutrophication objectives in Saginaw Bay:A 35year assessment .Jornal of Great Lakes Research 40:4-10. 243. Stoytcheva, M. 2011. Pesticides - Strategies for Pesticides Analysis. Janeza Trdine 9, 51000 Rijeka, Croatia P. 416. 244. Stratton, G.W. and Stewart, K.E., 1992. Glyphosate effects on microbial biomass in a coniferous forest soil. Environ. Toxicol. Water Qual. 17 (3), 223–236. 245. Stubblefield, R. E. and R. E. Sosebee.1985. Herbicidal Control of Silverleaf Nightshade. Proceeding of The Western Society of Weed Science. 38: 126. 246. Stubblefield, R. E. and R. E. Sosebee.1986. Herbicidal Control of Silverleaf Nightshade. Proceeding of The Western Society of Weed Science. 39: 117-118. 247. Suarez,A and Tsutsui, N.D.2008.The evolutionary consequences of biological invasion. Molecular ecology.17:351-360. 248. Sudol, T. and Krzyśko-Lupicka, T. 2005. Direct indicator of determination of glyphosate decomposition by filamentous fungi. Physicochemical Problems of Mineral Processing 39: 257-261. 249. Sun .M., Li. H., Jaisi .D. P.(2019).Degradation of glyphosate and bioavailability of phosphorus derivedfrom glyphosate in a soil-water system. Water Research 163 (2019) 114840 250. Sun F, Li S, He D, Cao G, Ni X, Tai G, Zhou Y and WangD. 2010. Effects of glycoalkaloids from Solanum plantson cucumber root growth.Phytochemistry .doi :10.1016/j .phytochem .2010 .06. 002251. Sviridov AV, Shushkova TV, Ermakova IT, Ivanova EV, Epiktetov DO, Leontievsky AA.2015. Microbial degradation of glyphosate herbicides (review). Applied Biochemistry and Microbiology; 51: 188‐195. 252. TAHRI M. (1987). La morelle jaune) Solanum elaeagnifolium Cav.): contribution à l’étude de la biologie et du désherbage chimique dans le périmetre irrigué du Tadla. Mém. TroisiemeCycle Agron., Opt. Malherbologie. Inst. Agron, Vét. Hassan II, Rabat. 253. Tang T, Boënne W, Desmet N, Seuntjens P, Bronders J, van Griensven A.2015. Quantification and Characterization of glyphosate use and loss in a residential area. Science of The Total Environment; 517: 207‐214. 254. Tanji, A.; C. Boulet and M. Hammoumi.1984. Inventaire Phytoécologique des Adventices de la Betterave Succiere Dans le Gharb (Maroc). Weed Research. 24: 391-399. 255. Tesfamariam T, Bott S, Cakmak 1, Romheld V, Neumann G. 2009. Glyphosate in the rhizosphere-Role of waiting times and different glyphosate binding forms insoils for phytotoxicity to non-target plants. European Journal of Agronomy 31, 126-132. 256. Thompson DG, Pitt DG, Buscarini T, Staznik B, Thomas DR. (1994). Initial deposits and persistence of forest herbicide residues in sugar maple foliage. Can. J. Forest Res. 25:2261–2262. 257. Thompson, D. G, Pitt, D.G, Buscarini, TM, Staznik, B and D. R. Thomas. 2000. Comparative fate of glyphosate and triclopyr herbicides in the forest floor and mineral soil of an Acadian forest regeneration site. Canadian Journal of Forest Research; 30:1808-16258. Tilman.,1999. Global environmental impcts of agricultural expansion:The need for sustainable and effient practices .proceeding of the National Academy of sciences 96,5995-6000. 259. Tolbot, HW, Johnson, L.M. and D. M. Munneck. 1984. Glyphosate utilization by Pseudomonas sp. and Alcaligenes sp. isolated from environmental sources. Curr Microbiol 10: 255–259. 260. Tomlin, C .2000. The Pesticide Manual. 12th edn. BCPC Publications, Surrey, UK. 261. Torstensson, L.,1985. Behaviour of glyphosate in soils and its degradation, in: E. Grossbard, D. Atkinson (Eds.), The Herbicide Glyphosate, Butterworth, London, pp. 137–150. 262. Tseng, S.H., Y.W. Lo, P.C. Chang, S.S.m Chou and H.M. 2004. Chang, Simultaneous quantification of glyphosate, glufosinate and their major metabolites in rice and soybean sprouts by gas chromatography with pulsed flame photometric detector, J. Agric. Food Chem. 52 , 4057–4063. 263. Van Faassen, H. G., and G. Lebbink. 1994. Organic matter and nitrogen dynamics in conventional versus integrated arable farming. Agriculture, ecosystems & environment,51(1-2), 209-226. 264. Vázquez, M.B., M.V. Moreno and M.R. Amodeo,2020. Effects of glyphosate on soil fungal communities: A field study, Revista Argentina de Microbiología, https://doi.org/10.1016/j.ram.10.005 265. Veiga, F.; Zapata, J. M.; Marcos, M. L. F.; Alvarez, E. 2001. Dynamics of glyphosate and aminomethylphosphonic acid in a forest soil in Galicia, north-west Spain. Science of the Total Environment, Amsterdam, v. 271, p. 135-144. 266. Verdier, J. L.1990. Travail du sol, Mauvaises Herbes et Désherbage. Phytoma. 414: 13-22.267. Vigna, M. R.; O. A. Fernadez and R. E. Brevedan.1981. Biologia Control de (Solanum elaeagnifolium Cav.) (Revision Bibiographica), Revisa Facultad de Agronomica. 2 (2): 79-89. 268. Villanueva, M. I. C., B. F. Muniz and R. S. Tames. 1985. Effect of glyphosate on growth and the chlorophyll and carotenoid levels of yellow nuts edge (Cyperus esculentus). Weed Sci., 33 (6):.p 751-754. 269. Walkley, A., and I.A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38. 270. WALLER, G.R., 1989. Allelochemical action of some natural products. In C.S.Chou and G.R. Waller (eds). Phytochemical Ecology: Allelochemicals, Mycotoxins and Insect Pheromones and Allomones , pp. 129-154. Academia Sinica Monograph Series No. 9. 271. Wang G, Fan X‐N, Tan Y‐Y, Cheng Q, Chen S‐D.2011. Parkinsonism after chronic occupational exposure to glyphosate. Parkinsonism & related disorders 2011; 17: 486‐487. 272. Wardle, D.A. and Parkinson, D., 1990. Influence of the herbicide glyphosate on soil microbial community structure. Plant Soil 122, 29–37. 273. Wauchope, R.D., T. Buttler, A. Hornsby, P. Augustijn-Beckers and J. Burt. 1992. The SCS/ARS CES pesticide properties database for environmental decision-making, Rev. Environ. Contam. Toxicol. 123, 1–157. 274. Weaver, M. A. et al.2007. Effects of glyphosate on soil microbial communities and its mineralization in a Mississippi soil. Pest Manag. Sci., v. 63, n. 4, p. 388-393.275. WHO. 2005. Glyphosate and AMPA in Drinking-water,” in Guidelines for Drinking Water Quality, WHO, Geneva, Switzerland, p. 1–11. 276. Williams GM, Kroes R, Munro IC.2000. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regulatory Toxicology andPharmacology; 31: 117‐165. 277. World Health Organization . 2005. Glyphosate and AMPA in Drinking-water,” in Guidelines for Drinking Water Quality, WHO, Geneva, Switzerland, p. 1–11. 278. Wyrill, J. B. and O. C. Burnside. 1976. Absorytion, translocation and metabolism of 2,4-D and glyphosate in common milkweed and hemp dogbane. Weed Sci. 24: 557-566. 279. Yamada, T., R. Kremer, P. Castro and B. Wood. 2009. Glyphosate interactions with physiology, nutrition, and diseases of plants: Threat to agricultural sustainability? preface. Eur. J. Agron. 31:111-113. 280. Yan, z., S. Chen, D. Sihi and Q.Chen. 2018.Phosphrus transformation response to soil properties changes induced by manure application in a calcareous soil. Geoderma. 322,163-171. 281. Yang X, Wang F, Bento CPM, Meng L, van Dam R, Mol H, et al.2015. Decay characteristics and erosion‐related transport of glyphosate in Chinese loess soil under field conditions. Science of the Total Environment; 530‐531: 87‐95. 282. Zabaloy MC, Carné I, Viassolo R, Gómez MA, and Gomez E. 2016. Soil ecotoxicity assessment of glyphosate use under fieldconditions: microbial activity and community structure ofEubacteria and ammonia-oxidising bacteria: Soilecotoxicityassessment of glyphosate use on bacterial communities. PestManag Sci. 72:684-691. 283. Zammour, S. and Mnari-Hattab, M. (2014). First report of Solanum elaeagnifolium as natural host of Tomato yellow leaf curl virus species (TYLCV and TYLCSV) in Tunisia. J Plant Pathol. 2014;96(2):434 284. Zboinska, E, Maliszewska I, Lejczak, B. and P. Kafarski. 1992. Degradation of organophosphonates by Penicillium citrinum. Lett Appl Microbiol 15: 269–272. 285. Zhang .Ch., Hu .X., Luo .J., Wu .Z., Wang. L., Li. B., Wang. Y and Sun .G (2015). Degradation Dynamics of Glyphosate in Different Types of Citrus Orchard Soils in China ., Molecules 2015, 20, 1161-1175; doi:10.3390/molecules20011161. 286. Zhang T, Johnson EN, Mueller TC, Willenborg CJ.2017. Early Application of Harvest Aid Herbicides Adversely Impacts Lentil. Agronomy Journal; 109: 239‐248. 287. ZHOU, X.; HE, X.; WANG, G.; GAO, H.; ZHOU, G.; YE, W. & YAO X.2006. Steroidal saponins from Solanum nigrum. Journal of Natural Products, v. 69, p. 1158-1163. 288. Zhu, X., Wu, H., Stanton, R., Burrows, G., Lemerle, D., and Raman, H. (2013). Time of emergence impacts the growth and reproduction of silverleaf nightshade (Solanum elaeagnifolium Cav.). Weed Biology and Management, 13(3), 98-103. https://doi.org/10.1111/wbm.12015 289. Zobiole LHS, Kremer RJ, de Oliveira Jr. RS, Constantin J. 2012. Glyphosate effects on photosynthesis, nutrient accumulation, and nodulation in glyphosate-resistant soybean. Journal of Plant Nutrition and Soil Science 175, 319–330.290. Zucconi F., Pera A., Forte M., de Bertoldi M., (1981), Evaluating toxicity of immature compost, Biocycle, 22, 291. Zygadlo, J. A. 1994. A comparative study of sterols in oil seeds of Solanum species. Phytochemistry, 35: 163-167.
Type
Thesis

2023-07-03
EndNote
Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at [email protected]