References
1. AGUIAR, N. O., OLIVARES, F. L., NOVOTNY, E. H., DOBBSS, L. B., BALMORI, D. M., SANTOS- JU´ NIOR, L. G., CHAGAS, J. G., FAÇANHA, A. R.,CANELLAS, L. P. Bioactivity of humic acids isolated from vermicomposts at different maturation stages. Plant Soil, 362, 2013, 161–174.
2. AHMED, O. H., AMMUDDIN, H., HANIF, M., HUSNI, A., JALLOH, B., MOHAMAD, M. M., and MAJID, N. A. Enhancing the urea-N use efficiency in maize cultivation on acid soils using urea amended with zeolite and TSP. Am. J. App. Sci., 5, 2009, 829-833.
3. ALEEM, M.I.H. AND M. ALEXANDER.. Nutrition and physiology of Nitrobacter agilis. Applied Microbiology, 8, 1960, 80-84.
4. ANTONKIEWICZ, J.; KUC, A.; WITKOWICZ, R.; TABAK, M. Effect of municipal sewage sludge on soil chemical properties and chemical composition of spring wheat. Ecol. Chem. Eng. S, 2019, 26, 583–595.
5. ANTOUN, L. W., SAHAR. A. Z AND HANAA. H. R. Influence of compost, N-mineral and humic acid on yield and chemical composition of wheat plant. J. Soil. Sci. Agric. Eng, Mansoura Univ. 1(11), 2010,1131-1143. 6. ANWAR, S., IQBAL, F., KHATTAK, W.A., ISLAM, M.S., IQBAL, B., & KHAN, S. Response of Wheat Crop to Humic Acid and Nitrogen Levels. El agriculture, 3(1), 2016, 558-565.
7. ARIF, M., ILYAS, M., RIAZ, K. ALI, K. SHAH, I. U., HAQ, S., FAHAD 2017 Biochar improves phosphorus use efficiency of organic-inorganic fertilizers, maize-wheat productivity and soil quality in a low fertility alkaline soil. Field Crop Res. 214 25
8. ASAL, M. W., ELHAM, A. B., IBRAHIM O.M., GHALAB E.G. Can humic acid replace part of the applied mineral fertilizers: A study on two wheat cultivars grown under calcareous soilconditions. Int.J. Chem. Tech. Res., Vol.8, No.9, 2015, pp 20-26.
9. ASSUERO, S. G; TOGNETTI, J. A. Tillering Regulation by Endogenous and Environmental Factors and its Agricultural Management. The Americans Journal of plant Science and biotechnology, 4, 2010, 35-48.
10. AULLAKH, M. S., WASSMANN, R., BUENO, C., KREUZWEISSER, J., RENNENBERG, H. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol., 3, 2001, 139–148.
11. AUSTIN, R.B. Yield of wheat in the United Kingdom: recent advances and prospects. Crop Science, 39 (6), 1999, 1604-1610.12. AZEEM, I., ULLAH. Physiological indices of spring maize as affected by integration of beneficial microbes with organic and inorganic nitrogen and their levels Commun Soil. Sci Plant Anal., 47, 2016, 2421-2432.
13. BAGLIERI, A., CADILI, V., MOZZETTI MONTERUMICI, C., GENNARI, M., TABASSO, S., MONTONERI, E., NARDI, S., NEGRE, M. Fertilization of bean plants with tomato plants hydrolysates. Effect on biomass production, chlorophyll content and N assimilation. Sci. Hortic, 176, 2014, 194–199.
14. BAKHTIARI, H., MOZAFARI, K., ASL, K., SAN, B., MIRZA, I. M. Bio-organic and inorganic fertilizers modify leaf nutrients, essential oil properties, and antioxidant capacity in medic savory (Satureja macrantha L.) J Biol Res., 2020, 93, 2020, 12-32.
15. BALSER, T. C. (2005) Humification. In 'Encyclopedia of soils in the environment'. (Eds D Hillel, D Rosenzweig, D Powlson, K Scow, MJ Singer, D Sparks). (Elsvier: Oxford).
16. BANOWETZ, G. M., AMMAR, K., CHEN, D. D. Temperature effects on cytokinin accumulation and kernel mass in a dwarf wheat. Ann Bot., 83, 1999, 303-307.
17. BARNEIX, A. J. Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. Journal of Plant Physiology, 164, 2007, 581-590.
18. BERBARA, R. L. L., GARCÍA, A. C. Humic substances and plant defense metabolism. In: Ahmad P, Wani, M. R., (eds) Physiological mechanisms and adaptation strategies in plants under changing enviornoment: volume 1.Springer Science+Business Media, New York, 2014, 297–319
19. BLOUIN, G.M., Method of making sulfur-coated fertilizer pallet having a controlled dissolution rate, 1967, Google Patents.
20. BREMNER, J. M. AND. KROGMEIER, M.J. Evidence that the adverse effect of urea
fertilizer on seed germination in soil is due to ammonia formed through hydrolysis of urea by soil urease. Proceedings of the National Academy of Sciences, 86, 1989, 8185-8188.
21. BREVIK, E. C., CERDÀ, A., MATAIX-SOLERA, J., PEREG, L., QUINTON, J. N., SIX, J., AND VAN OOST, K.:The interdisciplinary natur of soil, Soil, 1, 2015,117–129.
22. BROADBENT, F. E. (1986): Effects of organic matter on nitrogen and phosphorus supply to plants, in Chen, Y., Avnimelech, Y. (eds.): The Role of Organic Matter in Modern Agriculture. Martinus Nijhoff Publishers, Dordrecht, The Netherlands,1986, pp., 13–27
23. BROUQUISSE, R; MASCLAUX, C; FELLER, U; RAYMOND, P. Protein hydrolysis and nitrogen remobilization in plant life and senescence. In: Lea PJ and MorotGaudry JF (eds.) Plant Nitrogen. Berlin: Springer. 2001, P: 275-293.
24. BRUINSMA, J (2009) The resource outlook to 2050. By how much do land, water use and crop yields need to increase by 2050? FAO, Expert Meeting on How to Feed the World in 2050, Rome, Italy
25. BUDAK, N. Heritability, correlation and genotype year interaction of grain yield, test weight and protein content, in durum wheat. Turkish journal of field Crops, 5(2), 2000, 1111-1301.
26. BURDICK, E. M. Commercial humates for agriculture and the fertiliser industry. Economic Botany, 19, 1965, 152–156.
27. CAMPILLO, R; JOBET, C., and UNDURRAGE, P. effects of nitrogen on productivity, grain quality, and optimal nitrogen rates in winter wheat cv. kumpa-inia in andisols of southern chile. Chilean Journal Of Agricultural Research, 70(1), 2009, 122-131.
28. CANELLAS, L. P., AND OLIVARES, F. L. hysiological responses to humic substances as plant growth promoter. Chem. Biol. Technol. Agric., 1, 2014, 1–11.
29. CANELLAS, L. P., F. L. OLIVARES, N. O., AGUIAR, D. L., JONES, A., Nebbioso, Mazzei, P. and Piccolo., A . Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae 196, 2015, 15–27.30. CANELLAS, L. P., OLIVARES, F. L., OKOROKOVA-FAÇANHA, A. L., FAÇANHA, A. R. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H + -ATPase activity in maize roots. Plant Physiol., 130, 2002, 1951–1957
31. CANELLAS, L. P., SPACCINI, R., PICCOLO, A. Relationships between chemical characteristics and root growth promotion of humic acids isolated from Brazilian oxisols. Soil Sci., 174, 2009, 611–620
32. CANELLAS, L.P., PICCOLO, A., DOBBSS, L.B., SPACCINI, R., OLIVARES, F.L., ZANDONADI, D.B., FAC¸ ANHA, A.R. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere, 78, 2010, 457–466.
33. CAPUTO, C; BARNEIX, A. J. Amino acids export to the phloem in relation to N supply in wheat (Triticum aestivum L.) plants. Physiologia Plantarum, 101, 1997, 853-860.
34. CARLETTI, P., MASI, A., SPOLAORE, B., POLVERINO DE LAURETO, P., DE ZORZI, M. Protein Expression Changes in Maize Roots in Response to Humic Substances. J. Chem. Ecol., 34, 2008, 804-18.
35. CASIMIRO, I., MARCHANT, A., BHALERAO, R. P., BEECKMAN, T., DHOOGE, S., SWARUP, R., GRAHAM, N., INZÉ, D., SANDBER, G., CASERO, P. J., BENETT, M. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell, 13, 2001, 843–852.
36. CASSMAN, K. G., GINES, G. C., DIZON, M. A., SAMSON, M. I., AND ALCANTAR, J. M., Nitrogen use efficiency in tropical lowland rice systems: contribution from indigenous and applied nitrogen. Field Crop Research, 47,1996, 1-12.
37. CHRISPEELS, M. J., CRAWFORD, N. M., and SCHROEDER, J. I. Proteins for Transport of Water and Mineral Nutrients across the Membranes of Plant Cells. The plant cell, Vol. 11, 1999, 661-675.
38. CHUN, L., CHEN, F., ZHANG, F., MI, G. H. Root growth, nitrogen uptake and yield formation of hybrid maize with dif-ferent N efficiency. Plant Nutrition and Fertilizer Science, 11, 2005, 615-619.
39. CIESCHI, M. T., AND LUCENA, J. J. Iron and humic acid accumulation on soybean roots fertilized with leonardite iron humates under calcareous conditions. J. Agr. Food Chem., 66,2018, 13386–13396.
40. COLMER, T. D., and BLOOM A, J. A comparison of NH+ 4 and NO− 3 net fluxes along roots of rice and maize. Plant Cell Environ., 21, 1998, 240–246.
41. COX, M. C., QUALSET, C. O. & RAINS, D.W. Genetic variation for nitrogen assimilation and translocation in wheat. III. Nitrogen translocation in relation to grain yield and protein. Crop Sci. J., 26, 1986, 737-740.
42. CRASWELL, A. AND GODWIN, P. The efficiency of N fertilizers applied to cereals in different climates. Advances in Plant Nutrition, 1, 1984, 1-55.
43. CRAWFORD, N.M. & GLASS, A.D.M. Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science, 3, 1998, 389–395.
44. DAUBRESSE, C. M., DANIEL-VEDEL, F., DECHORGNAT, J., CHARDON, f., GAUFICHON, L., SUZUKI, A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, 105, 2010, 1141–1157.
45. DAUR, I., AND BAKHASHWAIN, A.A. Effect of humic acid on growth and quality of maize fodder production. Pak. J. Bot., 45, 2013, 21-25.
46. DAWSON, J. C., HUGGINS, D. R., JONES, S. S. Review. Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance ofcereal crops in low-input and organic agricultural systems. Field Crops Res., 107, 2008, 89-101.
47. DEWILLIGEN, P. Supply of soil nitrogen to the plant during the growing season. In Fundamental, ecological and agricultural aspects of nitrogen metabolism in higher plants. Eds. H Lam-bers, J. J Neeteson and I Stulen. 1986, pp. 417–432. Martinus Nijhoff Publishers, Dordrecht, Boston, Lancaster.
48. DHUGGA, K. S., and WAINES, J. G. Analysis of nitrogen accumulation and use in bread and durum wheat. Crop Science, 29, 1989, 1232-1239.
49. DIMMOCK, J. P. R. E. and GOODING, M. J. The effects of fungicides on rate and duration of grain filling in winter wheat in relation to the maintenance of flag leaf green area. Journal of Agricultural Science, 138, 2002, 1-16.
50. DOBERMANN, A., AND CASSMAN, K. G. Environmental dimensions of fertilizer nitrogen: What can be done to increase nitrogen use efficiency and ensure global food security? In ‘‘Agriculture and the Nitrogen Cycle: Assessing the Impacts of Fertilizer Use on Food Production and the Environment’’ [A. R. Mosier, J. K. Syers, and J. R. Freney, Eds. Paris, France],2004, pp. 261–278.
51. DOORODIAN, M., SHARGHI, Y., ALIPOUR A. and ZAHEDI, H. Yield and yield components of wheat as influenced by sowing date and humic acid. Int. J. Nat. Sci., 5(1), 2015, 8-14.
52. DYHR-JENSENL, K., BRIX, H. Effects of pH on ammonium uptake by Typha latifolia L. Plant Cell Environ., 19 (12), 1996, 1431–1436.
53. EL-GIZAWY, N. K. B. Yield and nitrogen use efficiency as influnnced by rates and sources of nitrogen fertilizers of some Wheat varieties. Agron. Dept., fac. Agric., Assiut Univ., 2005.
54. EYHERAGUIBEL, B., SILVESTRE, J., and MORARD. P. Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresour. Technol., 99, 2008, 4206-4212.
55. FAGERIA, N. K. Soil quality vs. environmentally based agriculture. Commun. Soil Sci. Plant Anal., 33, 2002, 2301–2329.
56. FAGERIA, N. K., and BALIGAR, V. C., Enhancing nitrogen use efficiency in crop plants. Advanced Agronomy. 88, 2005, 97-185.
57. FAO (2014). http://faostat.fao.org/.
58. FEIL, B., Breeding progress in small grain cereals a comparison of old and modern cultivars. Plant Breeding, 108, 1992, 1-11.
59. FELLER, U., FISCHER, A. Nitrogen metabolism in senescing leaves. Critical Reviews in Plant Sciences, 13, 1994, 241-273.
60. FINNEMANN, J., SCHJOERRING, J. K. Translocation of NH+4 in oilseed rape plants in relation to glutamine synthetase isogene expression and activity. Physiologia Plantarum, 105, 1999, 469–477.
61. FISCHER, R. A., HOWE, G. N and IBRAHIM, Z. Irrigated spring wheat and timing and amount of nitrogen fertilizer. I. grain yield and protein content. Field Crops Research, 33, 1993, 37-56.
62. FISCHER, R.A. Number of kernels in wheat crops and the influence of solar radiation and temperature. Journal of Agricultural Science, 105, 1985, 447-461.
63. FOOD AND AGRICULTURE ORGANIZATION CORPORATE STATISTICAL DATABASE (FAOSTAT). New Food Balances. Available online: http://www.fao.org/faostat/en/#data/FBS (accessed on 2 December 2019).
64. FOULKES, M. J; HAWKESFORD, M. J; BARRACLOUGH, P. B; HOLDSWORTH, M. J; KERR, S; KIGHTLEY, S; SHEWRY, P. R. Identifying traits to improve thenitrogen economy of wheat:Recent advances and future prospects. Field Crops Research,114, 2009, 329–342.
65. FREDERICK, J. R., and CAMBERATO, J. J. Water and nitrogen effects on winter wheat in the southeastern coastal plain: II- Physiological responses. Agron. J., 4, 1995, 241-248.
66. FRIAS, I., CALDEIRA, M. T., PEREZ-CASTINEIRA, J. R., NAVARRO-AVINO, J. P., CULIANEZ-MACIA, F. A., KUPPINGER, O. A major isoform of the maize plasma membrane H + -TPase: characterization and induction by auxin in coleoptiles. Plant Cell, 8, 1996, 1533-44.
67. GARC´IA, C., CECCANTI, B., MASCIANDARO, G., AND HERN´ANDEZ, T. Phosphataseandβ-glucosidaseactivitiesinhumicsubstances from animal wastes. Bioresource Technology, vol., 53, no. 1, 1995, pp. 79–87.
68. Garc´ıa-Mina, J. M., Antol´ın M. C., and. Sanchez-Diaz, M., Metal-humic complexes and plant micronutrient uptake: a study based on differen tplan tspecie scultivate di ndivers esoil types. Plant and Soil, vol. 258, no. 1-2, 2004, pp. 57–68.
69. GARNETT, T., CONN, V., KAISER, B. N. Root based approaches to improving nitrogen use efficiency in plant. Plant, cell and Environment, 32, 2009, 1272-1283.
70. GASTAL, F., LEMAIRE, G. N. uptake and distribution in crops: An agronomical and ecophysiological perspective. Jexp. Bot .vol., 53, no. 370, 2002, 789–799.
71. GAUER, L.E; GRANT, C.A; GEHL, D.T; BAILEY, L.D. Effects of nitrogen fertilization on grain protein content, nitrongen uptake, and nitrogenuse efficiency of six spring Wheat (Triticum aestivumL.) cultivars, in relation to estimated moisture supply. Can. J. Plant Sci, 72, 1992, 235-241.
72. GLASS, A. D. M. and SIDDIQI, M. Y. Nitrogen absorption by plant roots, in Nitrogen Nutrition in Higher Plants (Srivastava, H.S. and Singh, R.P., eds), 1995, pp. 21–56.
73. GLIBERT, P.M., MARANGER. R., AND SOBOTA. D.J. The Haber Bosch-harmful algal bloom (HB-HAB) link. Environmental Research Letters, 9, 2014, 1-13.
74. GOODING, M. J., ELLIS, R. H., SHEWRY, P. R., and SCHOFIELD, J. D., Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. Journal of Cereal Science, 37, 2003, 295-309.
75. GOYAL, S. S., AND HUFFAKER, R.C. The uptake of NO 3-, NO 2-, and NH 4+ by intact wheat (Triticum aestivum) seedlings. Plant Physiol 82, 1986, 1051-1056.
76. GRINDLAY, D. J. C. Towards an explanation of crop nitrogen demand based on the optimization of leaf nitrogen per unit leaf area. Journal of Agricultural Science, 128, 1997, 377-396
77. HABTEGEBRIAL, K; SINGH, B. R; HAILE, M. Impact of tillage and nitrogen fertilization on yield, nitrogen use efficiency of tef (Eragrostis tef (Zucc.) Trotter) and soil properties. Soil and Tillage Res, 94, 2007, 55-63.
78. HAGER,A. 2003.Role of the plasma membrane H + -ATPase in auxin-induced elongation growth: historical and new aspects. J. Plant Res., 116, 2003, 483–505.
79. HAMMAD, A., KHALIQ, F., ABBAS, W. FARHAD, S. FAHAD, M., ASLAM, H. F., BAKHAT. comparative effects of organic and inorganic fertilizers on soil organic carbon and wheat productivity under arid region, Soil Sci Plant Anal., 51, 2020, 1406
80. HAYES, M. H. B., CLAPP, C. E. Humic substances: Considerations of compositions, aspects of structure, and environmental influences. Soil Science 166, 2001, 723–737.
81. HIREL, B., LE GOUIS, J., NEY, B. and GALLAIS, A. The challenge of improving nitrogen use ef fi ciency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J. Exp. Bot. 58,,2007, 2369–2387 .
82. HUANG, P. M., HARDIE, A. G (2009) Formation mechanisms in humic substances in the environment. In 'Biophysical-chemical processes involving natural nonlivingorganic matter in environmental systems'. (Eds N Senesi, B Xing, PM Huang), 2009, pp. 41–109. (John Wiley & Sons: Hoboken, New Jersey).
83. HUGGINS, D. R. Nitrogen efficiency component analysis: an evaluation of cropping system differences in productivity. Agronomy Journal, 85 (4), 1993, 898–905.
84. HUGGINS, D. R., PAN, W. L. Key indicators for assessing nitrogen use efficiency in cereal-based agroecosystems. Journal of Crop Production, 8, 2003, 157–185.
85. IDRC (2010). Facts and Figures on Food and Biodiversity. Canada: IDRC Communications, International Development Research Centre. Availble online at: https://www.idrc.ca/en/research-in-action/facts-figures-food-and-biodiversity
86. IFA International Fertilizer Association. Fertilizer outlook 2017–2021. IFA annual conference – 22–24 May 2017 Marrakech (Marocco). Paris: IFA International Fertilizer Association, Services PITaA; 2017 June 2017.
87. IMBUFE, A. U., PATTI, A. F., BURROW, D., SURAPANENI, A., JACKSON W. R., MILNER, A. D. Effects of potassium humate on aggregate stability of two soils from Victoria, Australia. Geoderma, 125, 2005, 321–330.
88. IRVING, L. J., and ROBINSON, D., A dynamic model of Rubisco turnover in cereal leaves. New Phytologist, vol. 169, 2006, 493-504.
89. JAN, M.T., KHAN, M. J., KHAN, A., ARIF, M., FARHAULLAH; JAN, D; SAEED, M., AFRID, M. Z. Improvin wheat productivity through source and timing of nitrogen fertilization. Pak. J. Bot, vol., 43, no.2, 2011, 905-914.
90. JOHNSTON, G. F. S., JEFFCOAT, B. Effects of some growth regulators on tiller bud elongation in cereals. New Phytologist, 79, 1977, 239–245.
91. JOO, M. H., BAHRANI, A. Flag Leaf Role in N Accumulation and Remobilization as Affected by Nitrogen in a Bread and Durum Wheat Cultivars. American-Eurasian J. Agric. & Environ. Sci., 8 (6), 2010, 728-735.
92. KAFI, M; LAHOOTI, M; ZAND, E; SHARIFI, H. R AND GHOLDANI, M. Plant physiology (translation).5th Edn., Jehad Daneshgahi Mashhad Press, Mashhad, Iran, 2005, pp: 414.
93. KANDIL, A. A., SHARIEF, A. E. M., SEADH, S. E. AND ALTAI, D. S. K. Role of humic acid and amino acids in limiting loss of nitrogen fertilizer and increasing productivity of some wheat cultivars grown under newly reclaimed sandy soil. Int. J. Adv. Res. Biol. Sci., 3(4), 2016, 123-136.
94. KASCHL, A., CHEN, Y. (2005) Interactions of humic substances with trace metals and their stimulatory effects on growth. In 'Use of humic substances to remediate polluted environments: From theory to practice'. (Eds IV Perminova, K Hatfield, N Hertkorn) pp. 83–113. (Springer: Dordrecht, The Netherlands).
95. KHAN, R. U., RAHID, A. M., KHAN, S. AND OZTURK, E. Impact of humic acid and chemical fertilizer application on growth and grain yield of rainfed wheat (Triticum aestivum L.). Pak. J. Agric. Res. 23(3-4), 2010, 113-118.
96. KICHEY, T; HIREL, B; HEUMEZ, E; DUBOIS, F; Le GOUIS, J. In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crops Research, 102, 2007, 22–32.
97. Kostadinova, s., n. Yordanova and g. rachovski, 2010. Fertil- ization and agronomic efficiency at barley variety Kamenica. Field Crops Studies, 6 – 1: 85-90.
98. Krček M, Slamka P, Olšovská K, Bresti M, Ben íková M (2002). Reduction of drought stress effect in spring barley (Hordeum vulgare L.) by nitrogen fertilization. Plant Soil Environ. 54: 7-13.
99. LADHA, J. K., AND REDDY, P. M., Nitrogen fixation in rice systems: State of knowledge and future prospects. Plant Soil, 262, 2003,151–167100. LAM, H. M., WONG, P., CHAN, H. K. Overexpression of the ASN1 gene enhances nitrogen status in seeds of Arabidopsis. Plant Physiology, 132, 2003, 926–935.
101. LAUER, J. G., SIMMONS, S. R. Photoassimilate partitioning by tillers and individual tiller leaves in field-grown spring barley. Crop Science, 28, 1988, 279-282.
102. LAUERER, M., SAFTIC, D., QUICK, W. P., LABATE, C; FICHTNER, K., SCHULZE, E. D., RODERMEL, S. R., BOGORAD, L., STITT, M. Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with antisense rbcs. VI. Effect on photosynthesis in plants grown at different irradiance. Planta, 190, 1993, 332–345.
103. LAWLOR, D. W., BOYLE, F. A., KEYS, A. J., KENDALL, A. C., YOUNG A. T. Nitrate nutrition and temperature effects on wheat: a synthesis of plant growth and nitrogen uptake in relation to metabolic and physiological processes. Journal of Experimental Botany, 39, 1988, 329–343.
104. LAWLOR, D, W., LEMAIRE, G., GASTAL, F. Nitrogen, plant growth and crop yield. In: Lea PJ, Morot-Gaudry J-F, eds. Plant nitrogen. Berlin: Springer-Verlag, 2001, 343–367.
105. LAWLOR, D.W. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J. Exp. Bot.vol., 53, no.370, 2002, 773–787.
106. LEA, P. J., MIFLIN, B. J. Transport and metabolism of asparagine and other nitrogen compounds within the plants. In: Stumpt PK, Conn EE (eds.) The Biochemistry of Plants. Academic Press, New York. Vol., 5, 1980, 569-607.
107. LEA, P. J., ROBINSON, S. A., STEWARD, G. R. The enzymology and metabolism of glutamine, glutamate and asparagine. In: Miflin, B.J; Lea, P.J. (eds). "The Biochemistry of Plants: Amino Acids and Derivatives". Academic Press, New York. Vol., 16, 1990, 121-159.
108. LEA, P. J., SODEK, L., PARRY, M. A. J., SHERRY, P. R., HALFORD, N. G. Asparagine in plants. Annals of Applied Biology, 150, 2007: 1–26.
109. LEE, R. B. and RATCLIFFE, R. G. Planta, 183, 1991, 359-367.
110. LEITA, L., DE NOBILI, M., CATALANO, L., MORI, A. (1998) FORMATION AND VOLTAMETRIC CHARACTERISATION OF IRON-HUMATE COMPLEXES OF DIFFERENT MOLECULAR WEIGHT. IN 'HUMIC SUBSTANCES: STRUCTURES, PROPERTIES AND USES'. (Eds G Davies, EA Ghabbour) pp. 165-171. (The Royal Society of Chemistry: Cambridge).
111. LEON, M., LAINE, P., OURRY, A., BOUCAUD, J. Increased uptake of native soil nitrogen by roots of Lolium multiflorum after nitrogen fertilization is explained by a stimulation of the uptake process itself. Plant and Soil, 173, 1995, 197–203.
112. LITTLE, T.M and HILLS, F. G.Agricultural experimentation: design and analysis. Jhon Wiley & sons. USA. 1978, Pp: 350.
113. MACKOWIAK, C.L., GROSSL, P. R. and BUGBEE, B.G. Beneficial effects of humic acid on micronutrient availability to wheat. Soil Sci. Soc. Am. J. 65, 2001, 1744-1750
114. MAE, T. Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yield potential. Plant and Soil, 196, 1997, 201-210.
115. MANAL, F. M., THALOOTH, A. T., AMAL, G., AHMED, M. H. AND MOHAMED, M.H. Evaluation of the effect of chemical fertilizer and humic acid on yield and yield components of wheat plants (Triticum aestivum) grown under newly reclaimed sandy soil. International Journal of Chem Tech Research. 9(8), 2016, 154-161.
116. MARSCHNER H. Role of root growth, arbusular mycorrhiza, and root exudates for
the effficiency in nutrient acquisition. Field Crops Research, 56, 1998, 203-207.
117. MARSCHNER P. (2012): Mineral Nutrition of Higher Plants. Academic Press.
118. MARSCHNER, H. Mineral Nutrition of Higher Plants, 2nd edn. Academic Press, London, UK, 1995.119. MARSCHNER, H. Mineral Nutrition of Higher Plants, third ed. Elsevier Academic Press, Amsterdam. 2012
120. MENGEL K. and KIRKBY, E. A. Principles of plant nutrition. Kluwer Academic Publishers, Dordrecht, 2001, The Netherlands.
121. MEYER, C., STITT, M. Nitrate reductase and signaling. In: Lea PJ, Morot-Gaudry J-F, eds. Plant nitrogen. New York: Springer, 2001, 37–59.
122. Mi, G. H., Liu, J. A., Chen, F. J., Zhang, F. S., Cui, Z. L., Liu, X. S. Nitrogen uptake and remobilization in maize hybrids differing in leaf senescence. Journal of Plant Nutrition, 26, 2003, 237-247.
123. MIDMORE, D. J., CATWRIGHT, P. M., FISCHER, R.A. Wheat in tropical environments. 2. Crop growth and grain yield. Field Crop Res., 8, 1984, 207-227.
124. MIKKELSON, R. L. (2005) Humic materials for agriculture. In 'Better Crops' Vol., 89(3), 2005, pp. 6–10.
125. MILLER, A. J; COOKSON, S. J; SMITH, S. J; WELLS, D. M, The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants. Journal of Experimental Botany, 52, 2001, 541–549.
126. MIYAWAKI, K., MATSUMOTO-KITANO, M., KAKIMOTO, T. Expres-sion of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. The Plant Journal, 37,2004, 128–138.
127. MOE, S.M., MOH, A., HTWE, Z., KAJIHARA, Y., YAMAKAWA, T. 2019 Effects of integrated organic and inorganic fertilizers on yield and growth parameters of rice varieties Rice. Sci., 26, 2019, 309 318.
128. MOHANTY, M., REDDY, S.K., PROBERT, M.E., DALAL, R.C., RAO, S.A., MENZIES, N.W. Modelling N mineralization from green manure and farmyard manure from a laboratory incubation study. Ecol. Model. 222, 2011, 719–726.
129. MOHLMANN,T., BERNARD, C., HACH, S . Nucleoside transport and associated metabolism, Plant Biol., 12, 2010, 26–34.
130. MOLL, R. H., KAMPRATH, E. J., and JACKSON, W. A. Analysis and interpretation of factors which contribute to efficiency of N utilization. Agronomy Journal 74, 1982, 502-564.
131. MORA, V., BACAICOA, E., ZAMARRENO, A. M., AGUIRRE, E., GARNICA, M., FUENTES, M., GARCÍA-MINA, J. M. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients . Plant. Physiol., 167, 2010, 633–642.
132. MORA, V., BAIGORRI, R., BACAICOA, E., ZAMARREÑO, A. M., and GARCÍA-MINA, J. M. The humic acid-induced changes in the root concentration of nitric oxide, IAA and ethylene do not explain the changes in root architecture caused by humic acid in cucumber. Environ. Exp. Bot., 76, 2012, 24–32.
133. MYLONAS, V. A., MCCANTS, C. B. Effects of humic and fulvic acids on growth of tobacco 2. Tobacco growth and ion uptake. J. Plant Nutr., 2, 1980, 377-93.
134. NADERI, A., MAJIDI, H. E., HASHEMI, D. A., NOORMOHAMMADI, G., REZAIE, A. M. 2001. Evaluation of genetic diversity and modeling assimilates and nitrogen remobilization in wheat cultivars under water deficit. 235. Ph.D. Thesis. Science and Research Department of Islamic Azad University of Ahvaz Iran (in Persian).
135. NARDI, S., CARLETTI, P., PIZZEGHELLO, D., MUSCOLO, A. (2009) Biological activities of humic substances. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, Hoboken, pp 305–339
136. NARDI, S., ERTANI, A., FRANCIOSO, O. Soil–root cross-talking: the role of humic substances. J Plant Nutr. Soil Sci., 180, 2017, 5–13
137. NARDI, S., MUSCOLO, A., VACCARO, S., BAIANO, S., SPACCINI, R., PICCOLO, A. Relationship between molecular characteristics of soil humic fractionsand glycolytic pathway and krebs cycle in maize seedlings. Soil Biol Biochem, 39, 2007, 3138-46.
138. NARDI, S., PIZZEGHELLO, D., MUSCOLO, A., VIANELLO, A. Physiological effects of humic substances on higher plants. Soil Biol Biochem, 34, 2002, 1527–1536
139. NINNEMANN, O., JAUNIAUX, J. C., FROMMER, W. B. Identification of high NH4+ transporter from plants. The EMBO Journal, Vol., 13, 1994, 3464-3471.
140. NIU, J., CHEN, F. J., MI, G. H., LI, C. J., ZHANG, F. S. Transpiration, and nitrogen uptake and flow in two maize (Zea mays L.) Inbred Lines as Affected by Nitrogen Supply. Annals of Botany, 99, 2007, 153-160
141. NURYANI, S. H. U., PURWANTO, B. H., MAAS, A., WIWIK, E. W., BANNATI, O. A., AND SASMITA, K. D. Peningkatan efisiensi pemupukan n pada tanaman tebu melalui rekayasa khelat urea-humat. J. Ilmu Tanah dan Lingkungan,7, 2007, 93-102.
142. OLAETXEA, M., DE HITA, D., GARCIA, C. A., FUENTES, M., BAIGORRI, R., MORA, V. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root-and shoot- growth. Appl. Soil Ecol., 123, 2018, 521–537.
143. OORO, P.A; MALINGA, J.N; TANNER, D.G; PAYNE, T.S. Implication of rate and time of nitrogen application on Wheat (Triticum aestivum.L.) yield and quality in Kenya. Journal of Animal & Plant Science, vol. 9, Issue. 2, 2011, 1141-1146
144. ORITZ-MONASTERIO, J. I., SAYRE, K. D., RAJARAM, S., MCMAHON, M. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Science, 37, 1997, 898–904.
145. ORTIZ-MONASTERIO, J. I. Nitrogen management in irrigated spring wheat. Bread wheat: improvement and production.1999.
146. OWEN, A. G and JONES, D. L. Competition for amino acids be-tween wheat roots and rhizosphere microoorganisms and the role of amino acids in plant N acquisition. Soil Biol. Biochem. 33, 2001, 651–657.
147. PASSIOURA, J. B. Roots and drought resistance. Agricultural Water Management, 7, 1983, 265–280.
148. PEUKE, A. D. and KAISER, W. M. Nitrate or ammonium uptake and transport, and rapid regulation of nitrate reduction in higher plants. Progress in Botany, 57, 1996, 93-113.
149. PICCOLO, A., MBAGWU, J. S. C. Role of hydrophobic components of soil organic matter in soil aggregate stability. Soil Science Society of America Journal, 63, 1999, 1801–1810.
150. PICCOLO, A., PIETRAMELLARA, G., MBAGWU, J. S. C. Use of humic substances as soil conditioners to increase aggregate stability. Geoderma 75, 1997, 267–277.
151. PLAXTON, W.C. The organization and regulation of plant glycolysis.Annual Review Plant Physiology Plant Molecular Biology, 47, 1996, 185–214.
152. PUGLISI, E., FRAGOULIS, G., DEL RE, A.A., SPACCINI, R., PICCOLO, A., GIGLIOTTI, G., SAID-PULLICINO, D., TREVISAN, M. Carbon deposition in soil rhizosphere following amendments with compost and its soluble fractions, as evaluated by combined soil–plant rhizobox and reporter gene systems. Chemosphere, 73, 2008, 1292–1299.
153. PURAKAYASTHA, T. J. Evaluation of some modified urea fertilizers applied to rice. Fertil News, 42, 1997, 53–56.
154. QUAGGIOTTI, S., RUPERTI, B., PIZZEGHELLO, D., FRANCIOSO, O., TUGNOLI, V., AND NARDI, S. (2004). Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J. Exp.Bot. 55, 803–813.155. REEZA, A. A., AHMED, O. H., NIK MUHAMAD, N. A. M., JALLOH, M. B. Reducing ammonia loss from urea by mixing with humic and fulvic acids isolated from coal. American Journal of Environmental Sciences, 5, 2009, 420–426.
156. ROSE, M. T., PATTI, A. F., LITTLE, K. R., BROWN, A. L., JACKSON, W. R., CAVAGNARO, T. R. (2014) A meta-analysis and review of plant-growth response to humic substances: practical mplications for agriculture. Adv Agronom, 124, 2014, 37–89.
157. ROSE, R. Slow release fertilizers 101, in: R.K. Dumroese, L.E. Riley, T.D. Landis (Eds.),Technical, 2002.
158. Rowell, D. L. (1994): Soil Science: Methods and Applications.Longman Scientific & Technical, Harlow (Essex), UK.
159. RUCK, A., PALME, K., VENIS, M.A., NAPIER, R.M., FELLE, R.H. Patch-clamp analysis establishes a role for an auxin-binding protein in the auxin stimulation of lasma-membrane current in Zea mays protoplasts. Plant J., 4, 1993, 41–46.
160. RYAN, J., ESTEFAN, G. and RASHID, A. Soil and plant analysis: Laboratory Manual. ICARDA, NARC, 2001, 172 pp.
161. SAS INSTITUTE. 1222. SAS user’s guide: Statistics. SAS Inst., Cary, NC.
162. SAUDY, H. S., HAMED, M. F., ABD EL-MOMEN, R. W., HUSSEIN, H. Nitrogen use Rationalization and Boosting Wheat Productivity by Applying Packages of Humic, Amino Acids, and Microorganisms. Communications in Soil Scienceand Plant Analysis, 51, 8, 2020, 1036-1047.
163. SCHACHERER, A. AND BERINGER, H. (G) Number and size distribution of endosperm cells in developing cereal grain s as a n inde x for their sink capacity. Ber. Deutsch. Bot. Ge s. 97, 1984, 183-195.
164. SCHNITZER M (1978) Humic substances: chemistry and reactions. In: Schnitzer M, Khan SU (eds) Soil organic matter. Elsevier, Amsterdam
165. SCHULTEN, H. R., LEINWEBER, P. (2000): New insights into organic mineral particles: composition, properties, and models of molecular structure. Biol. Fert. Soils 30, 2000, 399 432.
166. SEMENOV, M. A., JAMIESON, P. D., MARTRE, P. Deconvoluting nitrogen use efficiency in wheat: A simulation study. Eur J Agron. 26, 2007, 283-294.
167. SHARIF, R., DALE, J. E. Growth-regulating substances and the growth of tiller buds in barley; Effects of IAA and GA3. Journal of Experimental Botany, 31, 1980, 1191-1197.
168. SHAVIV, A. Controlled release fertilizers. IFA International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt, International Fertilizer Industry Association, Paris, France, 2005.
169. SHEARMAN, V. J., SYLVESTER-BRADLEY, R., SCOTT, R. K., and FOULKES, M. J. Physiological processes associated with wheat yield progress in the UK. Crop Science, 45, 2005, 175-185.
170. SHUI-QIN, Z., LIANG, Y., LI WEI, L., ZHI-AN, L., YAN-TING , L. , SHU-WEN, H., BING-QIANG, Z. Effects of urea enhanced with different weathered coal-derived humic acid components on maize yield and fate of fertilizer nitrogen. J. of Integrative Agriculture, 18, 3, 2019, 656–666.
171. SIMPSON, A. J., HAYES, M. H. B., HUMPFER, E., KERSSEBAUM, R., KINGERY, W. L., SPRAUL, M., DVORTSAK, P., GODEJOHANN, M., HOFMANN, M. Molecular structures and associations of humic substances in the terrestrial environment. Naturwissenschaften 89, 2002, 84–88.
172. SINCLAIR, T. R., VADEZ, V. Physiological traits for crop yield improvement in low N and P environments. Plant and Soil, 245, 2002, 1-15.173. SINCLAIR, T. R; PINTER, P. J; KIMBALL, B. A; ADAMSEN, F. J; LAMORTE, R. L; WALL, G. W; HUNSAKER, D. J; ADAM, N; BROOK, T. J; GARCIA, R. L; THOMPSON, T; LEAVITT, S; MATTIAS, A. Leaf nitrogen concentration of wheat subjected to elevated [CO2] and either water or N deficits. Agriculture, Ecosystems & Environment, 79, 2000, 53-60.
174. SINGH, B. K. and JENNER, C. F. Association between concentration of organic nutrients in the grain, endosperm cell number and grain dry weight within the ear of wheat. Australian journal of plant physiology, 9, 1982, 83-93.
175. SINGLETARY, G.W; DOEHLERT, D. C; WILSON, C. M; MUHITCH, M. J. AND BELOW, F. E. Response of Enzymes and Storage Proteins of Maize Endosperm to Nitrogen Supply. Plant Physiol., 94(3), 1990, 858-864.
176. SPARK, K. M., WELLS, J. D., JOHNSON, B. B. The interaction of a humic acid with heavy metals. Australian Journal of Soil Research, 35, 1997, 89–101.
177. Stevenson, F. J, 1994. Humus Chemistry. Genesis, Composition, Reactions. second ed. John Wiley & Sons, New York. pp.496.
178. STEVENSON, F. J. 'Humus chemistry: genesis, composition, reactions.'(Wiley: New York) (1982).
179. STRUYK, Z., AND SPOSITO, G. (2001). Redox properties of standard humic acids. Geoderma, 102, 2001, 329–346.
180. SUNTARI, R; R. RURINI and M.M. SOEMARNO. Study on the release of N-available (NH4 + and NO3 - ) of Urea-Humate. Intern .J. Agri. and Fore, 6, 2013, 209-219.
181. SUTTON R, SPOSITO G. Molecular structure in soil humic substances: The new view. Environmental Science & Technology, 39, 2005, 9009–9015.
182. TABUCHI, M., ABIKO, T., YAMAYA, T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). Journal of Experimental Botany, 58, 2007, 2319–2327.
183. TAHIR, M. M., KHURSHID, M., KHAN, M. Z., ABBASI, M. K., HAZMI, M. H. Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere, 2, 2011, 124–131.
184. THANKUR, R. B. Performance of summer rice (Oryza sativa ) to varying levels of nitrogen. Indian. J. Agron., 38, (2), 1993, 187 - 190.
185. TIPPING, E. Cation binding by humic substances. Cambridge Environmental Chemistry Series 12. Cambridge University Press, Cambridge, 2002. 1–434.
186. TRCKOVA, M., STEHNO, Z., RAIMANOVA, I. Nitrate uptake and allocation in Triticum aestivum L. and Triticu durum Desf. Seedling. Plant Soil Environ., 25, 2006, 88-96.
187. TREVISAN S, FRANCIOSO O, QUAGGIOTTI S, NARDI S. Humic substances biological activity at the plant-soil interface. Plant Signaling Behav 5, 2010, 635–643
188. TREVISAN, S., PIZZEGHELLO, D., RUPERTI, B., FRANCIOSO, O., SASSI, A., PALME, K., QUAGGIOTTI, S., NARDI, S. substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biol. (Stuttg) 12, 2010, 604–614.
189. TUGULEA, A. M., OLIVER, D. R., THOMPSON, D. J., HAWTHORNE, F. C. (2001) Atomic force microscopy. (AFM) study of the adsorption of soil HA and soil FA at the mica-water interface. In 'Humic substances: structures, models and functions'. (Eds EA Ghabbour, G Davies) pp. 241–251. (The Royal Society of Chemistry: Cambridge, UK).
190. ULLRICH, W. R. Transport of nitrate and ammonium through plant membrance. In: Mengel, K. and Pilbeam, D. J. (eds)"Nitrogen Metabolism of Plants, Proceedings of the Phytochemical Society of Europe". pp. 121-137. Clarendon Press, Oxford, 1992191. Unkovich, M., Baldock, J., Forbes, M., 2010. Variability in harvest index of grain crops and potential significance for carbon accounting: examples form Australian agriculture. Adv. Agron. 105, 173–219.
192. URRUTIA, O., ERRO, J., GUARDADO, I., MANDADO, M., AND GARCIA-MINA, J. M. Theoretical chemical characterization of phospho-metal humic complexes and relationships with their effects on both phosphorus soil fixation and phosphorus availability for plants. J. Sci. Food Agric. 93, 2013, 293–303.
193. VACCARO, S., ERTANI, A., NEBBIOSO, A., MUSCOLO, A., QUAGGIOTTI, S., PICCOLO, A., NARDI, S. Humic substances stimulate maize nitrogen assimilation and amino acid metabolism at physiological and molecular level. Chem Biol Technol Agric, (2)5, 2015, 1-12.
194. VAN OOSTEROM, E. J., BORRELL, A. K., DEIFEL, K. S., HAMMER, G. L. DOES increased leaf appearance rate enhance adaptation to postanthesis drought stress in sorghum?. Crop Science, 51, 2011, 2728–2740.
195. VAN VUUREN, J. A. J and CLAASSENS, A. S. Greenhouse pot trials to determine the efficacy of black urea compared to other nitrogen sources. Communications in Soil Science and Plant Analysis, 40, 2009, 576–586.
196. VON LU TZOW, M; KO GEL-KNABNER, I; EKSCHMITT, K; FLESSA, H;
GUGGENBERGER,. G, MATZNER, E., MARSCHNER, B. Some frac-tionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 39, 2007, 2183–2207
197. WADA, G. The effects of Nitrogenous nutrition on the yield determining process of rice plant. Bull . Natl. Inst. Agiic. Sci. Japan.,16, 1969, 27 - 167.
198. WAQAS, M. B. Role of some agronomic traits for grain yield production in wheat genotypes under drought conditions Cientifica UDO Agricola. Vol 6, 2006, 11-19.
199. WERSHAW, R. L. A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems. Journal of Contaminant Hydrology, 1, 1986, 29–45.
200. WHALEY, J. M., SPARKES, D. L., FOULKES, M. J., SPINK, J. H., SEMERE, T. and Scott, R. K. The physiological response of winter wheat to reductions in plant density. Annals of Applied Biology, 137, 2000,165-177.
201. WHITE, P. J. The permeation of ammonium through a voltage-independent K+ channel in the plasma membrane of rye roots. J. Membr. Biol., 152, 1996, 89–99.
202. WILHELM, W.W. Dry matter partitioning and leaf area of winter wheat grown in a long term fallow tillage comparisons in US central great plains. Soil and Tillage Res, 49, 1948, 49–56.
203. XU, G; FAN, X; MILLER, A. J. Plant Nitrogen Assimilation and Use Efficiency. Plant Biol., 63, 2012, 153-82.
204. YADAV, R.L. Assessing on-farm efficiency and economics of fertilizer N, P and K in rice wheat systems of India. Field Crops Research, 18, 2003, 39-51.
205. YANG, J; JINZHOU, Z; ZHIQING, W; QINGSEN, Z; and WEI, W. Remobilization of carbon reserves in response to water deficit during grain filling of rice. Field Crops Res., 71, 2001, pp. 47-55.
206. YANG, M. D., LEGHARI, S. J., GUAN, X. K., MA, S. C., DING, C. M., MEI, F. J., WEI, L. WANG, T. C. Deficit Subsurface Drip Irrigation Improves Water Use Efficiency and Stabilizes Yield by Enhancing Subsoil Water Extraction in Winter Wheat. Front. Plant Sci., 2020, 11.
207. YUAN, L., ZHAO, B., LIN, Z., WEN, Y, LI, Y. Effect of value-added urea on wheat yield and N use efficiency and the distribution of residual N in soil profiles. Journal of Plant Nutrition and Fertilizer, 20, 2014, 620–628.
208. ZADOKS, J.C., CHANG, T.T., KONZAK, C.F. decimal code for the growth stages of cereals. Weed Research, 14, 1974, 415-421.209. ZANDONADI, D. B., CANELLAS, L., FAÇANHA, A. (2007) Indolacetic and humic acids induce lateral root development through a con-certed plasmalemma and tonoplast H+ pumps activation. Planta, 225, 2007, 1583–1595.
210. ZEBARTH, B. J; BOTHA, E. J; REES, H. Rate and time of fertlilizer nitrogen application on yield, protein and apparent efficiency of fertilizer nitrogen use of spring Wheat. Potato Research Centre, Agriculture and Agri-Food Canada, 2007.
211. ZELEKE, T. B., GREVERS, M.C.J., SI, B.C., MERMUT, A.R. & BEYENE, S. Effect of residue incorporation on physical properties of the surface soil in the South Central Rift Valley of Ethiopia. Soil Till. Res. 77, 2004, 35-4.
212. AHMED, OH., AMINUDDIN, H., HUSNI, M. H. A. Reducing ammonia loss from urea and improving soil-exchangeable ammonium retention through mixing triple superphosphate, humic acid and zeolite. Soil Use Manage, 22, 2006, 315-319.
213. ERCOLI, L., ARDUINI, I., MARIOTTI, M., LULLI, L AND MASONI, A. Management of sulphur fertiliser to improve durum wheat production and minimise S leaching. European Journal of Agronomy, 38, 2012, 74–82.
214. KUBOTA, H., IQBAL, M., QUIDEAU ,S., DYCK, M., SPANER, D. Agronomic and physiological aspects of nitrogen use efficiency in conventional and organic cereal-based production systems. Renewable Agriculture and Food Systems, 33(5), 2018,443-466