References
1. A.O.A.C. (1990). Association of official analytical chemistry 14th
edition William Horwitz. Editor, P.O. Box 540. Franklin Station,
Washington, D.C. 20044.
2. Adicotte, F. T., Lyon, J. L.1969. Ann. Rev. Plant physiol. 20:139_64
3. Afrasyab.Rahnama, Richaed.A.James, Kazem.Poustini,
Rana.Munns.(2010) “Stomatal conductance as a screen for ostomic
stress tolerance in durum wheat growing in saline soil,” Functional
Plant Biologr, vol. 37. No. 3, pp. 255-263, 2010.
4. Alarcon.J.J.Domingo ,R .G.Geen.S .R .Sanches-blanco,m .J
Rodrigues.A .Torrecillas ,L ,(2000): Sap flow as indicator of
transpiration and water status of young apicot stress. Plant and Soil.
5. Ali, H. M.; M. H. Siddiqui; M. H. Al-Whabi: M. O. Basalah; A.M.
Sakran and M. El- Zaidy, (2013). Effect of proline and Abscisic on
growth and phtysiological performance of faba bean under water stress.
Pak. J. Bot., 45(3): 933-940.
6. Allakhverdiev, S.I.; A. Sakamoto; Y. Nishiyama; M. Inaba; and N.
Murata (2000). Ionic and osmotic effects of NaCl-induced inactivation
of photosystems I and II in Synechococcus sp. Plant Physiology 123:
1047–1056.
7. Armah-Agyeman, G., Loiland, J., Karrow, R., & Hang, A. (2002).
Safflower.
8. Ashraf, M.; and M.R. Foolad (2007). Improving plant abiotic-stress
resistance by exogenous application of osmoprotectants glycinebetaine
and proline. Environmental and Experimental Botany 59: 206–216.
9. Attia, H.; C. Ouhibi; A. Ellili; N. Msilini; G. Bouzaïen; N. Karray; and
M. Lachaâl (2011). Analysis of salinity effects on basil leaf surface
area, photosynthetic activity, and growth. Acta Physiologiae Plantarum
33: 823–833.
10. Aurelie.L.Felicie ,L .Gerand,V .Pierre ,B .Pierre F .Francine,C.D
(1995): Les plants face au stress salin Agriculture.
11. Aymen, E. M., Zhani, K., Meriem, B. F., And Hannachi, C. (2012).
Seed priming for better growth and yield of safflower (Carthamus
tinctorius) under saline condition. Journal of Stress Physiology and
Biochemistry, 8(3).12. Babaei, K; A. Pirzad; and M.B. Aleyzadeh (2014). Effect of sodium
chloride on some morpho-physiological traits in Zea mays L.
Biotechnology: An Indian Journal 9: 366–371.
13. Bagherifard, G.; A. Bagheri; H. Sabourifard; G. Bagherifard; and M.
Najar (2015). The effect of salicylic acid on some morphological and
biochemistry parameters under salt stress in herb artichoke (Cynara
scolymus L.). Research Journal of Fisheries and Hydrobiology 10: 745–
750.
14. Balsamo, R.A.; and W.W. Thomson (1995). Salt effect on membrane
of the hypodermis and mesophyll cells of Avicennia germinans
(Avicenniaceae): a freeze-fracture study. American Journal of Botany
4: 435–440.
15. Barickman, T. C.; D. A. Kopsell; And C. E. Sams (2014). Abscisic acid
increases carotenoid and chlorophyll concentration in leaves and fruit
of two tomato genotypes. Journal of the American Society for
Horticultural Science, 139(3), 261- 266.
16. Barkosky, R.R.; and F.A. Einhellig (1993). Effects of salicylic acid on
plant water relationship. Journal Chemical Ecology 19: 237–247.
17. Bilal, H. M., Islam, H., Adnan, M., Tahir, R., Zulfiqar, R., Umer, M.
S., & Kaleem, M. M. (2020). Effect of Salinity Stress on Growth, Yield
and Quality of Roses: A Review. International Journal of
Environmental Sciences & Natural Resources, 25(1), 46-50.
18. Caliskan, O.; D. Kurt; K.E. Temizel; and M.S. Odabas (2017). Effect
of salt stress and irrigation water on growth and development of sweet
basil (Ocimum basilicum L.). Open Agriculture 2: 589–594.
19. Chinnusamy, V. and Zhu, JK. 2003. Plant salt tolerance: In Plant
Responses to Abiotic Stress. Topics in Current Genetics, vol. 4, p. 241-
270. http://dx.doi.org/10.1007/978-3-540-39402-0_10
20. Cha-Um, S.; and C. Kirdmanee (2009). Effect of salt stress on proline
accumulation, photosynthetic ability and growth characters in two
maize cultivars. Pakistan Journal of Botany 40: 87–98.
21. Crizel, R. L., Perin, E. C., Siebeneichler, T. J., Borowski, J. M.,
Messias, R. S., Rombaldi, C. V., & Galli, V. (2020). Abscisic acid and
stress induced by salt: Effect on the phenylpropanoid, L-ascorbic acid
and abscisic acid metabolism of strawberry fruits. Plant Physiology and
Biochemistry, 152, 211-220.
22. Cui, Z., Zhou, B., Zhang, Z., & Hu, Z. (2013). Abscisic acid promotes
flowering and enhances LcAP1 expression in Litchi chinensis
Sonn. South African Journal of Botany, 88, 76-79.23. Çulha, Ş., & Çakirlar, H. (2011). Effect of Salt Stress Induced by NaCl
on Safflower Carthamus tinctorius L. Cultivars at Early Seedling Stages
. Hacettepe Journal of Biology and Chemistry, 39(1), 61-64.
24. Dajue, L., & Mündel, H. H. (1996). Safflower, Carthamus tinctorius
L (Vol. 7). Bioversity International.
25. da Silva, T.I.; J.S. de Melo Filho; A.C. de Melo Gonçalves; L.V. de
Sousa; J.G. de Moura; T.J. Dias; and R.M.N. Mendonça (2018).
Salicylic acid effect on Ocimum basilicum L. during growth in salt
stress and its relationship between phytomass and gas Exchange.
Journal of Experimental Agriculture International 22: 1–10.
26. Dadkhah, A.R.; and H. Grrifiths (2006). The effect of salinity on
growth, inorganic ions and dry matter partitioning in sugar beet
cultivars. Journal of Agriculture and Sciences Technology 8: 199–210.
27. Darwish, M. (2017). Salicylic acid pretreatment improves the tolerance
of tobacco seedlings to alternation of light/dark periods stress. Jordan
Journal of Agricultural Sciences 13: 731–743.
28. de Azevedo Neto, A.D.; J.T. Prisco; J. Eneas; C.E.B. de Abreu; E.
Gomes-Filho (2006). Effect of salt stress on antioxidative enzymes and
lipid peroxidation in leaves and roots of salt-tolerant and salt sensitive
maize varieties. Environmental and Experimental Botany 56: 87–94.
29. Delavari, M.; K.K. Manoochehri; S. Enteshari; and A. Baghizadeh
(2011). Effect of salicylic acid and salt stress on Na and K content in
Ocimum basilicum L. Iranian Journal of Plant Physiology 1: 135–139.
30. Delavari, M.; S. Enteshari; and K.K. Manoochehri (2014). Effects of
Response of Ocimum basilicum to the interactive effect of salicylic acid
and salinity stress. Iranian Journal of Plant Physiology 4: 983–990.
31. Devi, C. S.; Rao, G. G.; Roa, G. R. “Co2 Incorporation Studies under
Salt Stress in Safflower (Carthamus tinctorius L.)”. J. nuclear Agric.
Biol. 1980, 9, 129-132.
32. Dubost, N.J.; Shewfelt, R.L.; Eitenmiller, R.R. (2003). Consumer
acceptability, sensory and instrumental analysis of peanut soy spreads.
Journal of Food Quality 26, 27–42.
33. Elouaer M. A, Zhanik،meriem B.F and Hannachic،(2012).Seed
Priming For Better Growth And Yield Of Safflower (Carthamus
tinctorius) Under Saline Condition.Journal Of Stress Physiology&
Biochemistry (2012)Vol. 8 No. 3 2012, pp. 135-143 ISSN 1997-0838.
34. Esanejad, N. S., Omidi, H., & Paraver, A. (2016). Effect of safflower
seeds priming with abscisic and gibberellic acid on germination indices
in salinity stress condition. Agroecology Journal, 11(4).35. FAO (2003). Global water crisis but May developing countries will face
the water scarcity. Rome, Italy: FAO, available at http:// www.fao.org
/english/ newsroom /nems/2003/15254-en.html.
36. FAO. (2009): High level expert Forum...How to Feed the world in
2050, Economic and social Development, Food and Agricultural
organization of the United Nation, Rome.
37. Faostate (2013) Food and Agriculture Organization of the Unite State.
Available:http://faostate.fao.org/site/567/DesktopDefault.aspx?PageI
D=567#ancor Acess: Augest 24, 2014.
38. Finkelstein, R. (2013). Abscisic acid synthesis and response. The
Arabidopsis book/American Society of Plant Biologists, 11.
39. Francois, L. E.; Bernstein, L. “Salt Tolerance of Safflower.” Agron. J.
1964, 56, 38-40.
40. Frick W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and
tissue- specific changes in ABA and in growth rate in response to
salinity in barley leaves. J Exp Bot 55: 1115-1123.
41. Gadallah M. A. A, (1996). Abscisic acid, temperature and salinity
interactions on growth and some mineral elements
in Carthamus plants. Plant Growth Regulation December
1996, Volume 20, Issue 3, pp 225–236.
42. Gadallah, M. A. A. (2004). Abscisic acid, temperature and salinity
interactions on growth and some mineral elements in Carthamus plants.
Semantic Scholar 2004 DOI: 10.1007LBF00043312.
43. Gecgel. U., Dermirci, M., Esendal. E., 2007. Fatty acid composition of
the Oil from developing seeds of different varieties of safflower
(Carthamus tinctorius l.) j. Amer. Oil Chem. Soc., 84;47-54.
44. Gengmao, Z., Yu, H., Xing, S., Shihui, L., Quanmei, S., & Changhai,
W. (2015). Salinity stress increases secondary metabolites and enzyme
activity in safflower. Industrial Crops and Products, 64, 175-181.
45. Giaytto O, Fernandez Em, Asnal We, Cerrioni Ga, Cholarki l (1999)
Comportamento de cultivares de cartamo (carthamus tinctorius l.) en la
region de Rio Cuarto, Cordoba (Argentina). Invest Agrar Prod Prot
Veg. 14:203-215.
46. Gholizadah F,Manzari-Tavakkoli A and Pazoki A,(2016).Evaluation
Of Salt Morphological Plants Artichoke,Flax,Safflower And
Coneflower. International Journal of Farming and Allied Science 2016
IJFAS Journal-2016-5-3/229-237/ISSN 2322-4134.47. Guo, W. L.; R. G. Chen; Z. H. Gong; Y. X. Yin; S.S. Ahmed and Y. M.
He. (2012). Exogenous abscisic acid increases antioxidants enzymes
and related gene expression in pepper (Capsicum annuum) leaves
subjected to chilling stress. Genetics and Molecular Research,11; 4063-
4080.
48. Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in
plants: physiological, biochemical, and molecular
characterization. International journal of genomics, 2014.
49. Gurmani, A. R., Bano, A., Khan, S. U., Din, J., & Zhang, J. L. (2011).
Alleviation of salt stress by seed treatment with abscisic acid (ABA),
6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes
ion and organic matter accumulation and increases yield of rice ('Oryza
sativa'L.). Australian Journal of Crop Science, 5(10), 1278-1285.
50. Hasegawa, P.M., Bressan, R.A., Zhu, J.K. and Bohnert, J. 2000. Plant
cellular and molecular responses to high salinity. Annual Review Plant
Physiology and Plant Molecular Biology, vol. 51, p. 463-499.
PMid:15012199.
51. Hasegawa, P.M., 2013. Sodium (Na+) homeostasis and salt tolerance
of plants. Environ. Exp. Bot. 92, 19–31.
52. Hayat, S.; and A. Ahmad (2007). Salicylic acid- a plant hormone.
Springer Science and Business Media. Springer Netherlands Publisher,
Pp 401.
53. Heidari, M., & Mesri, F. (2008). Salinity effects on compatible solutes,
antioxidants enzymes and ion content in three wheat cultivars. Pakistan
journal of biological sciences: PJBS, 11(10), 1385-1389.
54. Hernandez, J. A., Ferrer, M. A., Jimenez, A., Barcelo, A. R., and
Sevilla, F. (2001). Antioxidant systems and O2−/H2O2 production in the
apoplast of pea leaves. Its relation with salt-induced necrotic lesions in
minor veins. Plant Physiol. 127, 817–831. doi: 10.1104/pp.010188.
55. Hilhorst, H.W.M. (1995) A Critical update on seed dormancy. 1.
Primary dormancy. Seed Science Research 5, 61-73.
56. Hussain, Safdar., Saleem.f. Muhammad., Iqbal Javaid., Ibrahim, M.,
Allat, s., Ahamed. T., Kehmani, Mi.a. Exogenous application of
abscisic acid may improve the growth and yield of sunflower hybrids
under drought. Pakistan Journal of Agricultural Science 51(1). 2014.57. Isayenkov, S. V. (2012). Physiological and molecular aspects of salt
stress in plants. Cytol. Genet. 46, 302318.doi: 10.3103/
S0095452712050040.
58. Isayenkov, S. V., & Maathuis, F. J. (2019). Plant salinity stress: many
unanswered questions remain. Frontiers in Plant Science, 10, 80.
59. Jabeen, N., & Ahmad, R. (2013). The activity of antioxidant enzymes
in response to salt stress in safflower (Carthamus tinctorius L.) and
sunflower (Helianthus annuus L.) seedlings raised from seed treated
with chitosan. Journal of the Science of Food and Agriculture, 93(7),
1699-1705.
60. Javed, S., Bukhari, S. A., Ashraf, M. Y., Mahmood, S., and Iftikhar, T.
(2014). Effect of salinity on growth, biochemical parameters and fatty
acid composition in safflower (Carthamus tinctorius L.). Pak. J. Bot,
2014, 46.4: 1153-158.
61. Johanson, D.A. (1940). Plant micro teqnique. Growth Hill Book
Company. New York and London.
62. Jones, R.G.W. (1981). Salt tolerance. In: Johnson C.B. (ed.)
physiological Processes limiting plant productivity, Butter worths ,
London.
63. Karimi, G., Ghorbanli, M., Heidari, H., Nejad, R. K., & Assareh, M. H.
(2005). The effects of NaCl on growth, water relations, osmolytes and
ion content in Kochia prostrata. Biologia plantarum, 49(2), 301-304.
64. Kaya, C.; A.L. Tuna; M. Ashraf; and H Altunlu (2007). Improved salt
tolerance of melon (Cucummis melo L.) by the addition of proline and
potassium nitrate. Environmental and Experimental Botany 60: 397–
403.
65. Kaydan, D.; M. Yagmur; and N. Okut (2007). Effects of salicylic acid
on the growth and some physiological characters in salt stressed wheat
(Triticum aestivum L.). Tarim Bİlimleri Dergisi 13: 114–119.
66. Kermode, A.R. (2005) Role of abscisic acid in seed dormancy. Jounal
of Plant Growth Regulation 24, 319-344.
67. Khadri, M., Tejera, N. A., & Lluch, C. (2006). Alleviation of salt stress
in common bean (Phaseolus vulgaris) by exogenous abscisic acid
supply. Journal of Plant Growth Regulation, 25(2), 110-119.
68. Khan, NA. 2003. NaCl-inhibited chlorophyll synthesis and associated
changes in ethylene evolution and antioxidative enzyme activities in
wheat. Biologia Plantarum, vol.47, no. 3, p. 437-440.69. Khan, W; B. Prithiviraj; and P. Smith (2003). Photosynthetic responses
of corn and soybean to foliar application of salicylates. Journal of Plant
Physiology 20: 1–8.
70. Kibry J., Keasling J.D. Biosynthesis of plant isoprenoids: perspectives
for microbial engineering. Ann.REV. Plant Biol. 2009;60:335-355.
71. Knowles, P. F.; Bill, A. B.; Ruckman, J. E. “High Oleic Acid Content
in New Safflower, US-1”. Calif. Agric. 1965, 19, 15.
72. Koca, H.; M. Bor; F. Özdemir; and I. Türkan (2007). The effect of salt
stress on lipid peroxidation, antioxidative enzymes and proline content
of sesame cultivars. Environmental and Experimental Botany 60: 344–
351.
73. Kothari, M.J. and Shah, G.L. (1975). Epidermal structures and
ontogeny of stomata in the papilionacea. Bot., Gaz., 136(4):372-379.
74. Kurian, T.; Iyengar, E. R. R. “Response of Safflower (Carthamus
tinctorius l.) to Salinity of Sea Water”. Indian J. Agric. Sci. 1972, 42,
717-721.
75. Kurum, R., Ulukapi, K., AYDINŞAKİR, K., & Onus, A. N. (2013).
The influence of salinity on seedling growth of some pumpkin varieties
used as rootstock. Notulae Botanicae Horti Agrobotanici Cluj-Napoca,
41(1), 219-225.
76. Larque-Saavedra, A. (1978). The anti-transpirant effect of
acetylsalicylic acid on Phaseolus vulagaris L. Physiologia Plantarum
43: 126–128.
77. Levitt, (1980): Response of plants to environment stress vol 1, chilling
freeging and high temperature stress. Accadimic press Appel Agric.
78. Levitt, J. (1972). Salt and ion stresses. In: Physiological ecology:
aseries of monographs texts and treatises. Academic press, London, Pp
489–530.
79. Li, X.; S. Li; J. Wang; and J. Lin (2020). Exogenous Abscisic Acid
Alleviates Harmful Effect of Salt and Alkali Stresses on Wheat
Seedlings. International Journal of Environmental Research and Public
Health, 17(11), p. 3770.
80. Lima, MGS., Lopes, NF., Bacarin, MA. and Mendes, CR. 2004. Efeito
do estresse salino sobre a concentração de pigmentos e prolina em
folhas de arroz. Bragantia, vol. 63, no. 3, p. 335-340.
81. Locy, R. D., Chang, C. C., Nielsen, B. L., & Singh, N. K. (1996).
Photosynthesis in salt-adapted heterotrophic tobacco cells and
regenerated plants. Plant physiology, 110(1), 321-32882. Mahmoud.E; Younis.O; Elshahaby.A; Mahmoud.M;
Nemat.A;Zeinab.M.E.Kinetin.(2002): Alleviates the influence of
waterlogging and salinity on growth and affects the production of plant
growth reguhators in vigna sinensis and zea mays. Agronomie23.277-
285.Mansoura university, EGYPT.P277.
83. Majeed A, Nisar MF, Hussain K (2010). Effect of saline culture on the
concentration of Na+, K+ and Cl- in Agrostis tolonifera. Curr. Res. J.
Biol. Sci. 2(1): 76-82.
84. Mansour, M.M.F.; K.H.A. Salama; F.Z.M. Ali; and A.F.A. Hadid
(2005). Cell and plant responses to NaCl in Zea mays L. cultivars
differing in salt tolerance. General and Applied Plant Physiology 31:
29–41.
85. Mattson, F. H.; Grundy., S. M. “Comarison of Effects of Dietary
Saturated, Monounsaturated, and Polyunsaturated Fatty Acids on
Plasma Lipids and Lipoproteins in Man”. J. Lipi Res. 1985, 26, 194-
202.
86. Mehrnet K، Arifi and Ahmet Ö ،(2003).Effect Of Different Soil Salinity
Levels On Germination And Seedling Growth Of Safflower
(Carthamus tinctorius).Turk Agric sFor27(2003)221.227.
87. Misra, A.N.; S. M. Sahu; M. Mishra; P. Singh; I. Meera; N. Das; M.
Kar; and P. Sahu (1997). Sodium chloride induced changes in leaf
growth and pigment and protein contents in two rice cultivars. Biologia
Plantarum 39: 257–262.
88. Mohammad zadeh, M.; H. Arouiee; S.H. Neamati; and M. Shoor
(2013). Effect of different levels of salt stress and salicylic acid on
morphological characteristics of four mass native basils (Ocimum
basilcum). International Journal of Agronomy and Plant
Production;4:3590-3596.
89. Mohsen, A. A.; M. K. H. Ibrahim; And W. F. S. Ghoraba (2013). Effect
of salinity stress on Vicia faba productivity with respect two ascorbic
acid treatment.
90. Munns, R., and Passioura, J. B. (1984). Hydraulic resistance of plants.
Effects of NaCl in barley and lupin. Aust. J. Plant Physiol. 11, 351–
359. doi: 10.1071/PP9840351.
91. Munns, R., and Termaat, A. (1986). Whole-plant responses to
salinity. Aust. J. Plant Physiol. 13, 143–160. doi: 10.1071/PP9860143.92. Munns, R., and Tester, M. (2008). Mechanisms of salinity
tolerance. Annual Review of Plant Biology, 59, 651–681. doi:
10.1146/annurev.arplant.59.032607.09291
93. Naghibi, F.; M. Mosadegh; M.S. Mohammadi; and A.B Ghorbani
(2005). Labiatae family in folk medicine in lran: from ethnobotany to
pharmacology. Iranian Journal of Pharmaceutical Research 2: 63–79.
94. Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E.Plant
J. 2005 Mar; 41(5):697-709.
95. Nawaz, K., Hussain, K., Majeed, A., Khan, F., Afghan, S., & Ali, K.
(2010). Fatality of salt stress to plants: Morphological, physiological
and biochemical aspects. African Journal of Biotechnology, 9(34).
96. Nemati, I., Moradi, F., Gholizadeh, S., Esmaeili, M. A., & Bihamta, M.
R. (2011). The effect of salinity stress on ions and soluble sugars
distribution in leaves, leaf sheaths and roots of rice (Oryza sativa L.)
seedlings. Plant, Soil and Environment, 57(1), 26-33.
97. Nguyen, P.M.; and E.D. Niemeyer (2008). Effects of nitrogen
fertilization on the phenolic composition and antioxidant properties of
basil (Ocimum basilicum L.). Journal of Agricultural and Food
Chemistry 56: 8685–8691.
98. Nikbakht E, Mohammadi Nejadi G, Yousefi K and Farahbakhsh H.
(2010). Evaluation Salinity Tolerance of Safflower (Carthamus
tinctorius L.) Genotypes at Diffirent Vegetative Groweth Stages.
International Journal of Agronomy and Plant Production 2010
vol.1NO.4 ppl 05-111 ref.
99. Nublat, A., Desplans, J., Casse, F. and Berthomieu, P. 2001. sas1, an
Arabidopsis mutant over accumulating sodium in the shoot, shows
deficiency in the control of the root radial transport of sodium. The
Plant Cell, vol. 13, p. 125-137. PMid:11158534. PMCid:102204.
100. Ohkuma, K., Lyon, 1. L., Addicott, F. T., Smith, O. E. 1 963.
Science 142: 1 592-93.
101. Parida, a. and Das, ab. 2005. Salt tolerance and salinity effects
on plants: a review. Ecotoxicology and Environmental Safety, vol. 60,
no. 3, p. 324-349. PMid:15590011.
http://dx.doi.org/10.1016/j.ecoenv.2004.06.010.
102. Pearson. K.E. and Bauder. J.W. (2003): The basics of salinity
and sodicity effects on soil physical properties. Water quality and
irrigation management. P: 1-9.103. Peterson, R. 1996. Birdseed market. P. 15 in Proceeding of North
American Safflower Conference, Great Falls, Montana, 17-18 January
(H.-H. Mundel, J. Braum and Daniels, eds.) Lethbridge, AB, Canada.
104. Popova, L.; T. Pancheva; and A. Uzunova (1997). Salicylic acid:
Properties, Biosynthesis and physiological role. Bulgarian Journal of
Plant Physiology 23: 85–93.
105. Purdy, R. H. “Oxidative Stability of High Oleic Sunflower and
Safflower Oils” JAOCS, J. Am. Oil CHEM. Sos. 1985, 62, 523-525.
106. Putievsky, E.; and B. Galambosi (1999). Production systems of
sweet basil. In: Hiltunen R.; Holm Y. (eds). Basil: The genus Ocimum.
Harwood Academic Publishers, Amsterdam, Pp 39–65.
107. Qin Yuehao. 1990. An analysis on the clinical treatment of male
sterility of 300 cases by kidney- benefited and invigorating bloodcirculation
decoction (in Chinese). Jiangxi Traditional Chinese
medicine 21(3):21-22.
108. Richard. A. James, Carol. Blake, Caitlin. Siobhan. Byrt, and
Rana. Munns, “Major genes for Na+ exclusion, Nax1 and Nax2 (wheat
HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat
leaves under saline and waterlogged conditions,” Journal of
Experimental Botany, vol.2011.
109. Rajendran, K., Tester, M., and Roy, S. J. (2009). Quantifying the
three main components of salinity tolerance in cereals. Plant Cell
Environ. 32, 237–249. doi: 10.1111/j.1365-3040.2008.01916.x.
110. Rogers, M.E.; Craig, A.D.; Munns, R.; Colmer, T.D.; Nichols,
P.G.H.; Malcolm, C.V.; Barrett-Lennard, E.G.; Brown, A.J.; Semple,
W.S.; Evans, P.M.; Cowley, K.; Hughes, S.J.; Snowball, R.; Bennett,
S.J.; Sweeney, G.C.; Dear, B.S.; Ewing, M.A. (2005). The potential for
developing fodder plants for the salt-affected areas of southern and
eastern Australia: an overview. Australian Journal of Experimental
Agronomy 45: 301–329.
111. Rosa, M., Prado, C., Podazza, G., Interdonato, R., González, J.
A., Hilal, M., & Prado, F. E. (2009). Soluble sugars: Metabolism,
sensing and abiotic stress: A complex network in the life of
plants. Plant signaling & behavior, 4(5), 388-393.
112. Roy, S. J., Negrão, S., and Tester, M. (2014). Salt resistant crop
plants. Curr. Opin. Biotechnol. 26, 115–124. doi:
10.1016/j.copbio.2013.12.004.113. Ruiz-sola M.A., rodriguez-concepcion M. Carotenoid
biosynthesis in Arabidopsis: A colorful pathway. Vol. 10. THE
Araidopsis Book; 2012. p. e0158. doi. 119/tab.0158.
114. Sadia J. (2014). Effect of salinity on growth، biochemical
parameters and fatty acid composition in Safflower (Carthamus
tinctorius). Pakistan Journal of Botany 46(6):1153-118(2014).
115. Sairam, R. K and Tyagi, a. “Physiology and molecular biology
of salinity stress tolerance in plants,” Current Science, vol. 86, no. 3,
pp. 407–421, 2004.
116. Salem, N., Msaada, K., Dhifi, W., Limam, F., & Marzouk, B.
(2014). Effect of salinity on plant growth and biological activities of
Carthamus tinctorius L. extracts at two flowering stages. Acta
physiologiae plantarum, 36(2), 433-445.
117. Saroj k. Sah, Kambham R. reddy and Jiaxu Li. (2016). Abscisic
Acid and Abiotic Stress Tolerance in Crop. Plants Front Plant Science.
2016; 7: 571.10.3389/fpls.2016.00571.
118. Saxena, S. N.; N. Kaushik; And R. Sharma (2008). Effect of
abscisic acid and proline on in vitro flowering in Vigna aconitifolia.
Biologia plantarum. 2008 Mar 1; 52 (1); 181-3.
119. Seeman, J.R.; and T.D. Sharkey (1986). Salinity and nitrogen
effects on photosynthesis Ribolos1-5 biphosphate carboxylase in
(Phaseolus vulgaris L.). Plant Physiology 82: 555–560.
120. Senaratna, T.; D. Touchell; E. Bunn; and K. Dixon (2000).
Acetyl salicylic acid (Asprin) and salicylic acid induce multiple stress
tolerance in bean and tomato plants. Plant Growth Regulation 30: 157–
161.
121. Serrano, R. (1999). A glimpse of the Mechanisms of ion
homeostasis during salt stress. Journal of experimental Botany 50:
1023–1036.
122. Sharma, PK. and Hall, DO. 1991. Interaction of salt stress and
photoinhibition on photosynthesis in barley and sorghum. Journal of
Plant Physiology, vol. 138, no. 5, p. 614-619.
123. Shekoofeh, E.; H. Sepideh; and R. Roya (2012). Role of
mycorrhizal fungi and salicylic acid in salinity tolerance of Ocimum
basilicum resistance to salinity. African Journal of Biotechnology 11:
2223–2235124. Shtereva, L.A.; R.D. Vassilevska-Ivanova; and T.V. Karceva
(2015). Effect of salt stress on some sweet corn (Zea mays var.
saccharata) genotypes. Archives of Biological Sciences 67: 993–1000.
125. Singh, N. K., Bracker, C. A., Hasegawa, P. M., Handa, A. K.,
Buckel, S., Hermodson, M. A., ... & Bressan, R. A. (1987).
Characterization of osmotin: a thaumatin-like protein associated with
osmotic adaptation in plant cells. Plant physiology, 85(2), 529-536.
126. Sivstev, M.V.; S.A. Ponomareva; and E.A. Kuznetsova (1973).
Chlorophyllase activity in tomato leaves under influence of salinization
and herbicide. Soviet Plant physiology 20: 47–49.
127. Smith, J.R. “Safflower: Due for a Rebound? JAOCS, J. AM. Oil
Chem. Sos. 1985, 62, 1286-1291.
128. Smith, J.R. 1996. Safflower. AOCS Press, Chamoaign, IL, USA.
p. 624 (Emphasis is on origin of safflower production, marketing, and
search in the USA. Country-by- Country developments are presented.
129. Sujatha, M., Geetha, A. P., Sivakumar, P., & Palanisamy, N.
(2008, November). Biotechnological interventions for genetic
improvement of safflower. In Proceedings of VIIth International
Safflower Conference (pp. 3-6).
130. Sullivan, C. (2009). The science, culture and politics of food in
spring, Hamilton college, United states of America, 2009.
131. Sultana, N.; T. Ikeda; and R. Itoh (1999). Effect of NaCl salinity
on photosynthesis and dry matter accumulation in developing rice
grains. Environmental and Experimental Botany 42: 211–220.
132. Taiz, L. and Zeiger, E. 2009. Fisiologia Vegetal 4th ed. Porto
Alegre: Editora ARTMED. 848 p
133. Talaat, I.M.; H.I. Khattab; and A.M Ahmed (2014). Changes in
growth, hormones levels and essential oil content of Ammi visnaga
plants treated with some bioregulators. Bioscience 5:57–64.
134. Taleisnik-Gertel, E.; M. Tal.; and M.C. Shannon (1983). The
responses to NaCl of excited fully differentiating tissues of cultivated
tomato and its wild relatives. Physiologia Plantarum 59: 659–663.
135. Taylor et Burdon., 1970 pathway of biosynthesis of abscisic acid
in vascular plants: a review of the present state of knowledge of ABA
biosynthesis Journal of Experimental Botany, Volume 52, Issue 359, 1
June 2001, Pages 1145–1164.
136. Toteja N, (2007). Abscisic Acid and Abiotic Stress
Signaling.Journal Signaling &Bwhavior page 135-138 2007.137. Travagila, C., Reinoso, H., & Bottini, R. (2009). Application of
abscisic acid promotes yield in field-cultured soybean by enhancing
production of carbohydrates and their allocation in seed. Crop and
Pasture Science, 60(12), 1131-1136.
138. Trivellini, A.; B. Gordillo; F.J. Rodríguez-Pulido; E. Borghesi;
A. Ferrante; P. Vernieri; N. Quijada-Morín; M.L. González-Miret; and
F.J. Heredia (2014). Effect of salt stress in the regulation of
anthocyanins and color of Hibiscus flowers by digital image analysis.
Journal of Agricultural and Food Chemistry 62: 6966–6974.
139. Tsugane, K., Kobayashi, K., Niwa, Y., Ohba, Y., Wada, K., and
Kobayashi, H. (1999). A recessive Arabidopsis mutant that grows
photoautotrophically under salt stress shows enhanced active oxygen
detoxification. Plant Cell 11, 1195–1206. doi: 10.2307/3870742.
140. Udoveko, G.V.; V.F. Mashanskii; and I.A. Sinitskoya (1970).
Changes of root cell ultrastructure under salinization in plants of
different salt resistance. Soviet Plant Physiology 17: 813–818.
141. United Nation Department of Ecomomic and Social Affairs, and
Populatiom Division, 2015
142. United Nation Department of Economic and Social Affairs and
Population Division. (2015). World Population Prospects; The 2015
Revision, Key Finding and Advance Tables. New YORK, NY; United
Nation Department of Economic and Social Affairs.
143. Velikova, V., Yordanov, I. and Edreva, A. 2000. Oxidative stress
and some antioxidant systems in acid rain-treated bean plants:
Protective role of exogenous polyamines. Plant Science 151: 59–66.
144. Verma, S.; and R.S. Dubey (2003). Lead toxicity induces lipid
peroxidation and alters the activities of antioxidant enzymes in growing
rice plants. Plant Science 164: 645–655.
145. Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh,
J., Mishra, R. K., ... & Sharma, S. (2017). Abscisic acid signaling and
abiotic stress tolerance in plants: a review on current knowledge and
future prospects. Frontiers in plant science, 8, 161.
146. Vivekanandan, A.S.; H.P.M. Gunasena; and T. Sivanayagam
(1972). Statistical evaluation of the accuracy of three techniques used
in the estimation of leaf area of crop plants. Indian Journal of
Agricultural Science 42: 850–857.147. Waśkiewicz, A., Muzolf-Panek, M., & Goliński, P. (2013).
Phenolic content changes in plants under salt stress. In Ecophysiology
and responses of plants under salt stress (pp. 283-314). Springer, New
York, NY.
148. Wang Guishen. 1985. Clinical application of safflower (in
Chinese). Zhejiang Traditional Chinese Medical Science. J. 20(1):42-
43.
149. Wani SH, Kumar V.(2015).Plant Stress Tolerance Engineering
ABA:a potent phytohormone. Transcriptomics; An Open Access
3;1000113 10.4172L2329-8936.1000113.
150. Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F,
Valon C, Frei dit Frey N, Leung J Mol Plant. 2008 Mar; 1(2):198-217.
151. Weiss, E. A., 1971. Castor, Sesame and Safflower. Barnes and
Noble, Inc., New York. Pp.529-744.
152. Weiss, E. A., 2000. Safflower. In: oilseed crop, 93-129,
Blackwell. Ltd., Victoria, Australia, pp. 109, 606.
153. Williams, R.F. (1946). The physiology of plant growth with
special reference to the concept of net assimilation rate. Annals of
Botany 37, 41-71.
154. Williams, R.F. (1946). The physiology of plant growth with
special reference to the concept of net assimilation rate. Annals of
Botany 37: 41–71.
155. Wright STC, Hiron RWP. 1969. Abscisic acid, the growth
inhibitor induced in detached wheat leaves by a period of wilting.
Nature224,719–720.
156. Xinwen, X., Halliang, X., Yangling, Wang., Xiaojing, W.,
Yongzhi, Q. and Bo, X. 2008. The effect of salt stress on the
chlorophyll level of the main sand - binding plants in the shelterbelt
along the Tarim Desert Highway. Chinese Science Bulletin, vol. 53,
p.109-111. http://dx.doi.org/10.1007/s11434-008-6012-5.
157. Xiong L and Zhu Jian-k-Z. (2003). Regulation of Abscisic Acid
Biosynthesis. Plant Physiology2007.
158. Yancey, PH. 2005. Organic osmolytesas compatible metabolic
and counteracting cytoprotectants in high osmolarity and other
stress. The Journal of Experimental Biology, vol. 208, p. 2819-2830.
PMid:16043587.
159. Zhang, Z. (2001). Genetic diversity and classification of
safflower (Carthamus tinctorius L.) germplasm by isozyme techniques.
In Proceedings of the 5th International Safflower Conference,Williston, North Dakota and Sidney, Montana, USA, 23-27 July, 2001.
Safflower: a multipurpose species with unexploited potential and world
adaptability (pp. 157-162). Department of Plant Pathology, North
Dakota State University.
160. Zhu JK (2001). Plant soil tolerance. Trends Plant Sci. 6: 66-71