AGRIS - International System for Agricultural Science and Technology

Study the effect of sodium chloride treatment on some production and qualitative characteristics of safflower plant (Carthamus tinctorius)

2022

Merie Abdullah Shemali


Bibliographic information
Publisher
Tishreen University Faculty of Agriculture Engineering
Other Subjects
صفات إنتاجية; معاملة; صفات نوعية
Language
Arabic
Note
References 1. A.O.A.C. (1990). Association of official analytical chemistry 14th edition William Horwitz. Editor, P.O. Box 540. Franklin Station, Washington, D.C. 20044. 2. Adicotte, F. T., Lyon, J. L.1969. Ann. Rev. Plant physiol. 20:139_64 3. Afrasyab.Rahnama, Richaed.A.James, Kazem.Poustini, Rana.Munns.(2010) “Stomatal conductance as a screen for ostomic stress tolerance in durum wheat growing in saline soil,” Functional Plant Biologr, vol. 37. No. 3, pp. 255-263, 2010. 4. Alarcon.J.J.Domingo ,R .G.Geen.S .R .Sanches-blanco,m .J Rodrigues.A .Torrecillas ,L ,(2000): Sap flow as indicator of transpiration and water status of young apicot stress. Plant and Soil. 5. Ali, H. M.; M. H. Siddiqui; M. H. Al-Whabi: M. O. Basalah; A.M. Sakran and M. El- Zaidy, (2013). Effect of proline and Abscisic on growth and phtysiological performance of faba bean under water stress. Pak. J. Bot., 45(3): 933-940. 6. Allakhverdiev, S.I.; A. Sakamoto; Y. Nishiyama; M. Inaba; and N. Murata (2000). Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology 123: 1047–1056. 7. Armah-Agyeman, G., Loiland, J., Karrow, R., & Hang, A. (2002). Safflower. 8. Ashraf, M.; and M.R. Foolad (2007). Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycinebetaine and proline. Environmental and Experimental Botany 59: 206–216. 9. Attia, H.; C. Ouhibi; A. Ellili; N. Msilini; G. Bouzaïen; N. Karray; and M. Lachaâl (2011). Analysis of salinity effects on basil leaf surface area, photosynthetic activity, and growth. Acta Physiologiae Plantarum 33: 823–833. 10. Aurelie.L.Felicie ,L .Gerand,V .Pierre ,B .Pierre F .Francine,C.D (1995): Les plants face au stress salin Agriculture. 11. Aymen, E. M., Zhani, K., Meriem, B. F., And Hannachi, C. (2012). Seed priming for better growth and yield of safflower (Carthamus tinctorius) under saline condition. Journal of Stress Physiology and Biochemistry, 8(3).12. Babaei, K; A. Pirzad; and M.B. Aleyzadeh (2014). Effect of sodium chloride on some morpho-physiological traits in Zea mays L. Biotechnology: An Indian Journal 9: 366–371. 13. Bagherifard, G.; A. Bagheri; H. Sabourifard; G. Bagherifard; and M. Najar (2015). The effect of salicylic acid on some morphological and biochemistry parameters under salt stress in herb artichoke (Cynara scolymus L.). Research Journal of Fisheries and Hydrobiology 10: 745– 750. 14. Balsamo, R.A.; and W.W. Thomson (1995). Salt effect on membrane of the hypodermis and mesophyll cells of Avicennia germinans (Avicenniaceae): a freeze-fracture study. American Journal of Botany 4: 435–440. 15. Barickman, T. C.; D. A. Kopsell; And C. E. Sams (2014). Abscisic acid increases carotenoid and chlorophyll concentration in leaves and fruit of two tomato genotypes. Journal of the American Society for Horticultural Science, 139(3), 261- 266. 16. Barkosky, R.R.; and F.A. Einhellig (1993). Effects of salicylic acid on plant water relationship. Journal Chemical Ecology 19: 237–247. 17. Bilal, H. M., Islam, H., Adnan, M., Tahir, R., Zulfiqar, R., Umer, M. S., & Kaleem, M. M. (2020). Effect of Salinity Stress on Growth, Yield and Quality of Roses: A Review. International Journal of Environmental Sciences & Natural Resources, 25(1), 46-50. 18. Caliskan, O.; D. Kurt; K.E. Temizel; and M.S. Odabas (2017). Effect of salt stress and irrigation water on growth and development of sweet basil (Ocimum basilicum L.). Open Agriculture 2: 589–594. 19. Chinnusamy, V. and Zhu, JK. 2003. Plant salt tolerance: In Plant Responses to Abiotic Stress. Topics in Current Genetics, vol. 4, p. 241- 270. http://dx.doi.org/10.1007/978-3-540-39402-0_10 20. Cha-Um, S.; and C. Kirdmanee (2009). Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pakistan Journal of Botany 40: 87–98. 21. Crizel, R. L., Perin, E. C., Siebeneichler, T. J., Borowski, J. M., Messias, R. S., Rombaldi, C. V., & Galli, V. (2020). Abscisic acid and stress induced by salt: Effect on the phenylpropanoid, L-ascorbic acid and abscisic acid metabolism of strawberry fruits. Plant Physiology and Biochemistry, 152, 211-220. 22. Cui, Z., Zhou, B., Zhang, Z., & Hu, Z. (2013). Abscisic acid promotes flowering and enhances LcAP1 expression in Litchi chinensis Sonn. South African Journal of Botany, 88, 76-79.23. Çulha, Ş., & Çakirlar, H. (2011). Effect of Salt Stress Induced by NaCl on Safflower Carthamus tinctorius L. Cultivars at Early Seedling Stages . Hacettepe Journal of Biology and Chemistry, 39(1), 61-64. 24. Dajue, L., & Mündel, H. H. (1996). Safflower, Carthamus tinctorius L (Vol. 7). Bioversity International. 25. da Silva, T.I.; J.S. de Melo Filho; A.C. de Melo Gonçalves; L.V. de Sousa; J.G. de Moura; T.J. Dias; and R.M.N. Mendonça (2018). Salicylic acid effect on Ocimum basilicum L. during growth in salt stress and its relationship between phytomass and gas Exchange. Journal of Experimental Agriculture International 22: 1–10. 26. Dadkhah, A.R.; and H. Grrifiths (2006). The effect of salinity on growth, inorganic ions and dry matter partitioning in sugar beet cultivars. Journal of Agriculture and Sciences Technology 8: 199–210. 27. Darwish, M. (2017). Salicylic acid pretreatment improves the tolerance of tobacco seedlings to alternation of light/dark periods stress. Jordan Journal of Agricultural Sciences 13: 731–743. 28. de Azevedo Neto, A.D.; J.T. Prisco; J. Eneas; C.E.B. de Abreu; E. Gomes-Filho (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt sensitive maize varieties. Environmental and Experimental Botany 56: 87–94. 29. Delavari, M.; K.K. Manoochehri; S. Enteshari; and A. Baghizadeh (2011). Effect of salicylic acid and salt stress on Na and K content in Ocimum basilicum L. Iranian Journal of Plant Physiology 1: 135–139. 30. Delavari, M.; S. Enteshari; and K.K. Manoochehri (2014). Effects of Response of Ocimum basilicum to the interactive effect of salicylic acid and salinity stress. Iranian Journal of Plant Physiology 4: 983–990. 31. Devi, C. S.; Rao, G. G.; Roa, G. R. “Co2 Incorporation Studies under Salt Stress in Safflower (Carthamus tinctorius L.)”. J. nuclear Agric. Biol. 1980, 9, 129-132. 32. Dubost, N.J.; Shewfelt, R.L.; Eitenmiller, R.R. (2003). Consumer acceptability, sensory and instrumental analysis of peanut soy spreads. Journal of Food Quality 26, 27–42. 33. Elouaer M. A, Zhanik،meriem B.F and Hannachic،(2012).Seed Priming For Better Growth And Yield Of Safflower (Carthamus tinctorius) Under Saline Condition.Journal Of Stress Physiology& Biochemistry (2012)Vol. 8 No. 3 2012, pp. 135-143 ISSN 1997-0838. 34. Esanejad, N. S., Omidi, H., & Paraver, A. (2016). Effect of safflower seeds priming with abscisic and gibberellic acid on germination indices in salinity stress condition. Agroecology Journal, 11(4).35. FAO (2003). Global water crisis but May developing countries will face the water scarcity. Rome, Italy: FAO, available at http:// www.fao.org /english/ newsroom /nems/2003/15254-en.html. 36. FAO. (2009): High level expert Forum...How to Feed the world in 2050, Economic and social Development, Food and Agricultural organization of the United Nation, Rome. 37. Faostate (2013) Food and Agriculture Organization of the Unite State. Available:http://faostate.fao.org/site/567/DesktopDefault.aspx?PageI D=567#ancor Acess: Augest 24, 2014. 38. Finkelstein, R. (2013). Abscisic acid synthesis and response. The Arabidopsis book/American Society of Plant Biologists, 11. 39. Francois, L. E.; Bernstein, L. “Salt Tolerance of Safflower.” Agron. J. 1964, 56, 38-40. 40. Frick W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue- specific changes in ABA and in growth rate in response to salinity in barley leaves. J Exp Bot 55: 1115-1123. 41. Gadallah M. A. A, (1996). Abscisic acid, temperature and salinity interactions on growth and some mineral elements in Carthamus plants. Plant Growth Regulation December 1996, Volume 20, Issue 3, pp 225–236. 42. Gadallah, M. A. A. (2004). Abscisic acid, temperature and salinity interactions on growth and some mineral elements in Carthamus plants. Semantic Scholar 2004 DOI: 10.1007LBF00043312. 43. Gecgel. U., Dermirci, M., Esendal. E., 2007. Fatty acid composition of the Oil from developing seeds of different varieties of safflower (Carthamus tinctorius l.) j. Amer. Oil Chem. Soc., 84;47-54. 44. Gengmao, Z., Yu, H., Xing, S., Shihui, L., Quanmei, S., & Changhai, W. (2015). Salinity stress increases secondary metabolites and enzyme activity in safflower. Industrial Crops and Products, 64, 175-181. 45. Giaytto O, Fernandez Em, Asnal We, Cerrioni Ga, Cholarki l (1999) Comportamento de cultivares de cartamo (carthamus tinctorius l.) en la region de Rio Cuarto, Cordoba (Argentina). Invest Agrar Prod Prot Veg. 14:203-215. 46. Gholizadah F,Manzari-Tavakkoli A and Pazoki A,(2016).Evaluation Of Salt Morphological Plants Artichoke,Flax,Safflower And Coneflower. International Journal of Farming and Allied Science 2016 IJFAS Journal-2016-5-3/229-237/ISSN 2322-4134.47. Guo, W. L.; R. G. Chen; Z. H. Gong; Y. X. Yin; S.S. Ahmed and Y. M. He. (2012). Exogenous abscisic acid increases antioxidants enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress. Genetics and Molecular Research,11; 4063- 4080. 48. Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International journal of genomics, 2014. 49. Gurmani, A. R., Bano, A., Khan, S. U., Din, J., & Zhang, J. L. (2011). Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice ('Oryza sativa'L.). Australian Journal of Crop Science, 5(10), 1278-1285. 50. Hasegawa, P.M., Bressan, R.A., Zhu, J.K. and Bohnert, J. 2000. Plant cellular and molecular responses to high salinity. Annual Review Plant Physiology and Plant Molecular Biology, vol. 51, p. 463-499. PMid:15012199. 51. Hasegawa, P.M., 2013. Sodium (Na+) homeostasis and salt tolerance of plants. Environ. Exp. Bot. 92, 19–31. 52. Hayat, S.; and A. Ahmad (2007). Salicylic acid- a plant hormone. Springer Science and Business Media. Springer Netherlands Publisher, Pp 401. 53. Heidari, M., & Mesri, F. (2008). Salinity effects on compatible solutes, antioxidants enzymes and ion content in three wheat cultivars. Pakistan journal of biological sciences: PJBS, 11(10), 1385-1389. 54. Hernandez, J. A., Ferrer, M. A., Jimenez, A., Barcelo, A. R., and Sevilla, F. (2001). Antioxidant systems and O2−/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 127, 817–831. doi: 10.1104/pp.010188. 55. Hilhorst, H.W.M. (1995) A Critical update on seed dormancy. 1. Primary dormancy. Seed Science Research 5, 61-73. 56. Hussain, Safdar., Saleem.f. Muhammad., Iqbal Javaid., Ibrahim, M., Allat, s., Ahamed. T., Kehmani, Mi.a. Exogenous application of abscisic acid may improve the growth and yield of sunflower hybrids under drought. Pakistan Journal of Agricultural Science 51(1). 2014.57. Isayenkov, S. V. (2012). Physiological and molecular aspects of salt stress in plants. Cytol. Genet. 46, 302318.doi: 10.3103/ S0095452712050040. 58. Isayenkov, S. V., & Maathuis, F. J. (2019). Plant salinity stress: many unanswered questions remain. Frontiers in Plant Science, 10, 80. 59. Jabeen, N., & Ahmad, R. (2013). The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. Journal of the Science of Food and Agriculture, 93(7), 1699-1705. 60. Javed, S., Bukhari, S. A., Ashraf, M. Y., Mahmood, S., and Iftikhar, T. (2014). Effect of salinity on growth, biochemical parameters and fatty acid composition in safflower (Carthamus tinctorius L.). Pak. J. Bot, 2014, 46.4: 1153-158. 61. Johanson, D.A. (1940). Plant micro teqnique. Growth Hill Book Company. New York and London. 62. Jones, R.G.W. (1981). Salt tolerance. In: Johnson C.B. (ed.) physiological Processes limiting plant productivity, Butter worths , London. 63. Karimi, G., Ghorbanli, M., Heidari, H., Nejad, R. K., & Assareh, M. H. (2005). The effects of NaCl on growth, water relations, osmolytes and ion content in Kochia prostrata. Biologia plantarum, 49(2), 301-304. 64. Kaya, C.; A.L. Tuna; M. Ashraf; and H Altunlu (2007). Improved salt tolerance of melon (Cucummis melo L.) by the addition of proline and potassium nitrate. Environmental and Experimental Botany 60: 397– 403. 65. Kaydan, D.; M. Yagmur; and N. Okut (2007). Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L.). Tarim Bİlimleri Dergisi 13: 114–119. 66. Kermode, A.R. (2005) Role of abscisic acid in seed dormancy. Jounal of Plant Growth Regulation 24, 319-344. 67. Khadri, M., Tejera, N. A., & Lluch, C. (2006). Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply. Journal of Plant Growth Regulation, 25(2), 110-119. 68. Khan, NA. 2003. NaCl-inhibited chlorophyll synthesis and associated changes in ethylene evolution and antioxidative enzyme activities in wheat. Biologia Plantarum, vol.47, no. 3, p. 437-440.69. Khan, W; B. Prithiviraj; and P. Smith (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology 20: 1–8. 70. Kibry J., Keasling J.D. Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Ann.REV. Plant Biol. 2009;60:335-355. 71. Knowles, P. F.; Bill, A. B.; Ruckman, J. E. “High Oleic Acid Content in New Safflower, US-1”. Calif. Agric. 1965, 19, 15. 72. Koca, H.; M. Bor; F. Özdemir; and I. Türkan (2007). The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany 60: 344– 351. 73. Kothari, M.J. and Shah, G.L. (1975). Epidermal structures and ontogeny of stomata in the papilionacea. Bot., Gaz., 136(4):372-379. 74. Kurian, T.; Iyengar, E. R. R. “Response of Safflower (Carthamus tinctorius l.) to Salinity of Sea Water”. Indian J. Agric. Sci. 1972, 42, 717-721. 75. Kurum, R., Ulukapi, K., AYDINŞAKİR, K., & Onus, A. N. (2013). The influence of salinity on seedling growth of some pumpkin varieties used as rootstock. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 219-225. 76. Larque-Saavedra, A. (1978). The anti-transpirant effect of acetylsalicylic acid on Phaseolus vulagaris L. Physiologia Plantarum 43: 126–128. 77. Levitt, (1980): Response of plants to environment stress vol 1, chilling freeging and high temperature stress. Accadimic press Appel Agric. 78. Levitt, J. (1972). Salt and ion stresses. In: Physiological ecology: aseries of monographs texts and treatises. Academic press, London, Pp 489–530. 79. Li, X.; S. Li; J. Wang; and J. Lin (2020). Exogenous Abscisic Acid Alleviates Harmful Effect of Salt and Alkali Stresses on Wheat Seedlings. International Journal of Environmental Research and Public Health, 17(11), p. 3770. 80. Lima, MGS., Lopes, NF., Bacarin, MA. and Mendes, CR. 2004. Efeito do estresse salino sobre a concentração de pigmentos e prolina em folhas de arroz. Bragantia, vol. 63, no. 3, p. 335-340. 81. Locy, R. D., Chang, C. C., Nielsen, B. L., & Singh, N. K. (1996). Photosynthesis in salt-adapted heterotrophic tobacco cells and regenerated plants. Plant physiology, 110(1), 321-32882. Mahmoud.E; Younis.O; Elshahaby.A; Mahmoud.M; Nemat.A;Zeinab.M.E.Kinetin.(2002): Alleviates the influence of waterlogging and salinity on growth and affects the production of plant growth reguhators in vigna sinensis and zea mays. Agronomie23.277- 285.Mansoura university, EGYPT.P277. 83. Majeed A, Nisar MF, Hussain K (2010). Effect of saline culture on the concentration of Na+, K+ and Cl- in Agrostis tolonifera. Curr. Res. J. Biol. Sci. 2(1): 76-82. 84. Mansour, M.M.F.; K.H.A. Salama; F.Z.M. Ali; and A.F.A. Hadid (2005). Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. General and Applied Plant Physiology 31: 29–41. 85. Mattson, F. H.; Grundy., S. M. “Comarison of Effects of Dietary Saturated, Monounsaturated, and Polyunsaturated Fatty Acids on Plasma Lipids and Lipoproteins in Man”. J. Lipi Res. 1985, 26, 194- 202. 86. Mehrnet K، Arifi and Ahmet Ö ،(2003).Effect Of Different Soil Salinity Levels On Germination And Seedling Growth Of Safflower (Carthamus tinctorius).Turk Agric sFor27(2003)221.227. 87. Misra, A.N.; S. M. Sahu; M. Mishra; P. Singh; I. Meera; N. Das; M. Kar; and P. Sahu (1997). Sodium chloride induced changes in leaf growth and pigment and protein contents in two rice cultivars. Biologia Plantarum 39: 257–262. 88. Mohammad zadeh, M.; H. Arouiee; S.H. Neamati; and M. Shoor (2013). Effect of different levels of salt stress and salicylic acid on morphological characteristics of four mass native basils (Ocimum basilcum). International Journal of Agronomy and Plant Production;4:3590-3596. 89. Mohsen, A. A.; M. K. H. Ibrahim; And W. F. S. Ghoraba (2013). Effect of salinity stress on Vicia faba productivity with respect two ascorbic acid treatment. 90. Munns, R., and Passioura, J. B. (1984). Hydraulic resistance of plants. Effects of NaCl in barley and lupin. Aust. J. Plant Physiol. 11, 351– 359. doi: 10.1071/PP9840351. 91. Munns, R., and Termaat, A. (1986). Whole-plant responses to salinity. Aust. J. Plant Physiol. 13, 143–160. doi: 10.1071/PP9860143.92. Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. doi: 10.1146/annurev.arplant.59.032607.09291 93. Naghibi, F.; M. Mosadegh; M.S. Mohammadi; and A.B Ghorbani (2005). Labiatae family in folk medicine in lran: from ethnobotany to pharmacology. Iranian Journal of Pharmaceutical Research 2: 63–79. 94. Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E.Plant J. 2005 Mar; 41(5):697-709. 95. Nawaz, K., Hussain, K., Majeed, A., Khan, F., Afghan, S., & Ali, K. (2010). Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. African Journal of Biotechnology, 9(34). 96. Nemati, I., Moradi, F., Gholizadeh, S., Esmaeili, M. A., & Bihamta, M. R. (2011). The effect of salinity stress on ions and soluble sugars distribution in leaves, leaf sheaths and roots of rice (Oryza sativa L.) seedlings. Plant, Soil and Environment, 57(1), 26-33. 97. Nguyen, P.M.; and E.D. Niemeyer (2008). Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry 56: 8685–8691. 98. Nikbakht E, Mohammadi Nejadi G, Yousefi K and Farahbakhsh H. (2010). Evaluation Salinity Tolerance of Safflower (Carthamus tinctorius L.) Genotypes at Diffirent Vegetative Groweth Stages. International Journal of Agronomy and Plant Production 2010 vol.1NO.4 ppl 05-111 ref. 99. Nublat, A., Desplans, J., Casse, F. and Berthomieu, P. 2001. sas1, an Arabidopsis mutant over accumulating sodium in the shoot, shows deficiency in the control of the root radial transport of sodium. The Plant Cell, vol. 13, p. 125-137. PMid:11158534. PMCid:102204. 100. Ohkuma, K., Lyon, 1. L., Addicott, F. T., Smith, O. E. 1 963. Science 142: 1 592-93. 101. Parida, a. and Das, ab. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, vol. 60, no. 3, p. 324-349. PMid:15590011. http://dx.doi.org/10.1016/j.ecoenv.2004.06.010. 102. Pearson. K.E. and Bauder. J.W. (2003): The basics of salinity and sodicity effects on soil physical properties. Water quality and irrigation management. P: 1-9.103. Peterson, R. 1996. Birdseed market. P. 15 in Proceeding of North American Safflower Conference, Great Falls, Montana, 17-18 January (H.-H. Mundel, J. Braum and Daniels, eds.) Lethbridge, AB, Canada. 104. Popova, L.; T. Pancheva; and A. Uzunova (1997). Salicylic acid: Properties, Biosynthesis and physiological role. Bulgarian Journal of Plant Physiology 23: 85–93. 105. Purdy, R. H. “Oxidative Stability of High Oleic Sunflower and Safflower Oils” JAOCS, J. Am. Oil CHEM. Sos. 1985, 62, 523-525. 106. Putievsky, E.; and B. Galambosi (1999). Production systems of sweet basil. In: Hiltunen R.; Holm Y. (eds). Basil: The genus Ocimum. Harwood Academic Publishers, Amsterdam, Pp 39–65. 107. Qin Yuehao. 1990. An analysis on the clinical treatment of male sterility of 300 cases by kidney- benefited and invigorating bloodcirculation decoction (in Chinese). Jiangxi Traditional Chinese medicine 21(3):21-22. 108. Richard. A. James, Carol. Blake, Caitlin. Siobhan. Byrt, and Rana. Munns, “Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions,” Journal of Experimental Botany, vol.2011. 109. Rajendran, K., Tester, M., and Roy, S. J. (2009). Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ. 32, 237–249. doi: 10.1111/j.1365-3040.2008.01916.x. 110. Rogers, M.E.; Craig, A.D.; Munns, R.; Colmer, T.D.; Nichols, P.G.H.; Malcolm, C.V.; Barrett-Lennard, E.G.; Brown, A.J.; Semple, W.S.; Evans, P.M.; Cowley, K.; Hughes, S.J.; Snowball, R.; Bennett, S.J.; Sweeney, G.C.; Dear, B.S.; Ewing, M.A. (2005). The potential for developing fodder plants for the salt-affected areas of southern and eastern Australia: an overview. Australian Journal of Experimental Agronomy 45: 301–329. 111. Rosa, M., Prado, C., Podazza, G., Interdonato, R., González, J. A., Hilal, M., & Prado, F. E. (2009). Soluble sugars: Metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant signaling & behavior, 4(5), 388-393. 112. Roy, S. J., Negrão, S., and Tester, M. (2014). Salt resistant crop plants. Curr. Opin. Biotechnol. 26, 115–124. doi: 10.1016/j.copbio.2013.12.004.113. Ruiz-sola M.A., rodriguez-concepcion M. Carotenoid biosynthesis in Arabidopsis: A colorful pathway. Vol. 10. THE Araidopsis Book; 2012. p. e0158. doi. 119/tab.0158. 114. Sadia J. (2014). Effect of salinity on growth، biochemical parameters and fatty acid composition in Safflower (Carthamus tinctorius). Pakistan Journal of Botany 46(6):1153-118(2014). 115. Sairam, R. K and Tyagi, a. “Physiology and molecular biology of salinity stress tolerance in plants,” Current Science, vol. 86, no. 3, pp. 407–421, 2004. 116. Salem, N., Msaada, K., Dhifi, W., Limam, F., & Marzouk, B. (2014). Effect of salinity on plant growth and biological activities of Carthamus tinctorius L. extracts at two flowering stages. Acta physiologiae plantarum, 36(2), 433-445. 117. Saroj k. Sah, Kambham R. reddy and Jiaxu Li. (2016). Abscisic Acid and Abiotic Stress Tolerance in Crop. Plants Front Plant Science. 2016; 7: 571.10.3389/fpls.2016.00571. 118. Saxena, S. N.; N. Kaushik; And R. Sharma (2008). Effect of abscisic acid and proline on in vitro flowering in Vigna aconitifolia. Biologia plantarum. 2008 Mar 1; 52 (1); 181-3. 119. Seeman, J.R.; and T.D. Sharkey (1986). Salinity and nitrogen effects on photosynthesis Ribolos1-5 biphosphate carboxylase in (Phaseolus vulgaris L.). Plant Physiology 82: 555–560. 120. Senaratna, T.; D. Touchell; E. Bunn; and K. Dixon (2000). Acetyl salicylic acid (Asprin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation 30: 157– 161. 121. Serrano, R. (1999). A glimpse of the Mechanisms of ion homeostasis during salt stress. Journal of experimental Botany 50: 1023–1036. 122. Sharma, PK. and Hall, DO. 1991. Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum. Journal of Plant Physiology, vol. 138, no. 5, p. 614-619. 123. Shekoofeh, E.; H. Sepideh; and R. Roya (2012). Role of mycorrhizal fungi and salicylic acid in salinity tolerance of Ocimum basilicum resistance to salinity. African Journal of Biotechnology 11: 2223–2235124. Shtereva, L.A.; R.D. Vassilevska-Ivanova; and T.V. Karceva (2015). Effect of salt stress on some sweet corn (Zea mays var. saccharata) genotypes. Archives of Biological Sciences 67: 993–1000. 125. Singh, N. K., Bracker, C. A., Hasegawa, P. M., Handa, A. K., Buckel, S., Hermodson, M. A., ... & Bressan, R. A. (1987). Characterization of osmotin: a thaumatin-like protein associated with osmotic adaptation in plant cells. Plant physiology, 85(2), 529-536. 126. Sivstev, M.V.; S.A. Ponomareva; and E.A. Kuznetsova (1973). Chlorophyllase activity in tomato leaves under influence of salinization and herbicide. Soviet Plant physiology 20: 47–49. 127. Smith, J.R. “Safflower: Due for a Rebound? JAOCS, J. AM. Oil Chem. Sos. 1985, 62, 1286-1291. 128. Smith, J.R. 1996. Safflower. AOCS Press, Chamoaign, IL, USA. p. 624 (Emphasis is on origin of safflower production, marketing, and search in the USA. Country-by- Country developments are presented. 129. Sujatha, M., Geetha, A. P., Sivakumar, P., & Palanisamy, N. (2008, November). Biotechnological interventions for genetic improvement of safflower. In Proceedings of VIIth International Safflower Conference (pp. 3-6). 130. Sullivan, C. (2009). The science, culture and politics of food in spring, Hamilton college, United states of America, 2009. 131. Sultana, N.; T. Ikeda; and R. Itoh (1999). Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environmental and Experimental Botany 42: 211–220. 132. Taiz, L. and Zeiger, E. 2009. Fisiologia Vegetal 4th ed. Porto Alegre: Editora ARTMED. 848 p 133. Talaat, I.M.; H.I. Khattab; and A.M Ahmed (2014). Changes in growth, hormones levels and essential oil content of Ammi visnaga plants treated with some bioregulators. Bioscience 5:57–64. 134. Taleisnik-Gertel, E.; M. Tal.; and M.C. Shannon (1983). The responses to NaCl of excited fully differentiating tissues of cultivated tomato and its wild relatives. Physiologia Plantarum 59: 659–663. 135. Taylor et Burdon., 1970 pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis Journal of Experimental Botany, Volume 52, Issue 359, 1 June 2001, Pages 1145–1164. 136. Toteja N, (2007). Abscisic Acid and Abiotic Stress Signaling.Journal Signaling &Bwhavior page 135-138 2007.137. Travagila, C., Reinoso, H., & Bottini, R. (2009). Application of abscisic acid promotes yield in field-cultured soybean by enhancing production of carbohydrates and their allocation in seed. Crop and Pasture Science, 60(12), 1131-1136. 138. Trivellini, A.; B. Gordillo; F.J. Rodríguez-Pulido; E. Borghesi; A. Ferrante; P. Vernieri; N. Quijada-Morín; M.L. González-Miret; and F.J. Heredia (2014). Effect of salt stress in the regulation of anthocyanins and color of Hibiscus flowers by digital image analysis. Journal of Agricultural and Food Chemistry 62: 6966–6974. 139. Tsugane, K., Kobayashi, K., Niwa, Y., Ohba, Y., Wada, K., and Kobayashi, H. (1999). A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11, 1195–1206. doi: 10.2307/3870742. 140. Udoveko, G.V.; V.F. Mashanskii; and I.A. Sinitskoya (1970). Changes of root cell ultrastructure under salinization in plants of different salt resistance. Soviet Plant Physiology 17: 813–818. 141. United Nation Department of Ecomomic and Social Affairs, and Populatiom Division, 2015 142. United Nation Department of Economic and Social Affairs and Population Division. (2015). World Population Prospects; The 2015 Revision, Key Finding and Advance Tables. New YORK, NY; United Nation Department of Economic and Social Affairs. 143. Velikova, V., Yordanov, I. and Edreva, A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science 151: 59–66. 144. Verma, S.; and R.S. Dubey (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science 164: 645–655. 145. Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R. K., ... & Sharma, S. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Frontiers in plant science, 8, 161. 146. Vivekanandan, A.S.; H.P.M. Gunasena; and T. Sivanayagam (1972). Statistical evaluation of the accuracy of three techniques used in the estimation of leaf area of crop plants. Indian Journal of Agricultural Science 42: 850–857.147. Waśkiewicz, A., Muzolf-Panek, M., & Goliński, P. (2013). Phenolic content changes in plants under salt stress. In Ecophysiology and responses of plants under salt stress (pp. 283-314). Springer, New York, NY. 148. Wang Guishen. 1985. Clinical application of safflower (in Chinese). Zhejiang Traditional Chinese Medical Science. J. 20(1):42- 43. 149. Wani SH, Kumar V.(2015).Plant Stress Tolerance Engineering ABA:a potent phytohormone. Transcriptomics; An Open Access 3;1000113 10.4172L2329-8936.1000113. 150. Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J Mol Plant. 2008 Mar; 1(2):198-217. 151. Weiss, E. A., 1971. Castor, Sesame and Safflower. Barnes and Noble, Inc., New York. Pp.529-744. 152. Weiss, E. A., 2000. Safflower. In: oilseed crop, 93-129, Blackwell. Ltd., Victoria, Australia, pp. 109, 606. 153. Williams, R.F. (1946). The physiology of plant growth with special reference to the concept of net assimilation rate. Annals of Botany 37, 41-71. 154. Williams, R.F. (1946). The physiology of plant growth with special reference to the concept of net assimilation rate. Annals of Botany 37: 41–71. 155. Wright STC, Hiron RWP. 1969. Abscisic acid, the growth inhibitor induced in detached wheat leaves by a period of wilting. Nature224,719–720. 156. Xinwen, X., Halliang, X., Yangling, Wang., Xiaojing, W., Yongzhi, Q. and Bo, X. 2008. The effect of salt stress on the chlorophyll level of the main sand - binding plants in the shelterbelt along the Tarim Desert Highway. Chinese Science Bulletin, vol. 53, p.109-111. http://dx.doi.org/10.1007/s11434-008-6012-5. 157. Xiong L and Zhu Jian-k-Z. (2003). Regulation of Abscisic Acid Biosynthesis. Plant Physiology2007. 158. Yancey, PH. 2005. Organic osmolytesas compatible metabolic and counteracting cytoprotectants in high osmolarity and other stress. The Journal of Experimental Biology, vol. 208, p. 2819-2830. PMid:16043587. 159. Zhang, Z. (2001). Genetic diversity and classification of safflower (Carthamus tinctorius L.) germplasm by isozyme techniques. In Proceedings of the 5th International Safflower Conference,Williston, North Dakota and Sidney, Montana, USA, 23-27 July, 2001. Safflower: a multipurpose species with unexploited potential and world adaptability (pp. 157-162). Department of Plant Pathology, North Dakota State University. 160. Zhu JK (2001). Plant soil tolerance. Trends Plant Sci. 6: 66-71
Type
Thesis

2024-01-16
EndNote
Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at agris@fao.org