References
1- Abd-Elsamee MO, Fathy Abbas Motawe H, Maher Selim M and Ramadan Elsherif HM
(2020). Effect of Different Dietary Crude Protein Levels and Citric Acid on Broiler
Chickens’ Performance, Carcass Characteristics, Intestinal Morphology, and Blood
Components. World Vet. J., 10 (3): pp 362-374. DOI:
https://dx.doi.org/10.36380/scil.2020.wvj45.
2- Afsharmanesh., M. and Pourreza., J. (2005). Effects of Calcium, Citric Acid, Ascorbic
Acid, Vitamin D3 on the Efficacy of Microbial Phytase in Broiler Starters Fed Wheat-
Based Diets I. Performance, Bone Mineralization and Ileal Digestibility. International
Journal of Poultry Science, 4: 418-424. DOI: 10.3923/ijps.2005.418.424. URL:
https://scialert.net/abstract/?doi=ijps.2005.418.424.
3- Al-Kassi, A. Galib and Mohssen, M. Aqeel. (2009). Comparative Study between Single
Organic Acid Effect and Synergistic Organic Acid Effect on Broiler Performance. Pak.
J. Nutr., 8 (6): pp 896-899, 2009. DOI: https://doi.org/10.3923/pjn.2009.896.899.
URL:https://scialert.net/abstract/?doi=pjn.2009.896.899.
4- Alkhalf, A., Alhaj, M., and Al-homidan, I. (2010). Influence of probiotic supplementation
on blood parameters and growth performance in broiler chickens. Saudi Journal of Biol.
Sci. 17: 219–225. DOI: https://doi.org/10.1016/j.sjbs.2010.04.005.
5- Alp, M., Kocabagli, N., Kahraman, R., ans Bostan, K. (1999). Effects of Dietary
Supplementation with Organic Acids and Zinc Bacitracin on Ileal Microflora, pH and
Performance in Broilers. Tr. J. of Veterinary and Animal Sciences. (23): pp 451–455.
6- Apelblat, Alexander. (2014). Chapter 2: Properties of Citric Acid and Its Solutions.
CITRIC ACID. Springer International Publishing Switzerland 2014. PP:(13-142). ISBN
978-3-319-11232-9 ISBN 978-3-319-11233-6. DOI: https://doi.org/10.1007/978-3-319-
11233-6.
7- Archana, K., Zuyie, R. and Vidyarthi, V.K. (2019). Effects of dietaryaddition of organic
acid on performance of broiler chicken. Livestock Research International. 7: 71-76.
8- Bernal, Pedro. (2020). Comment on the Standard Molar Volumes for Citric Acid. J.
Chem. Eng. Data, 65, (2), pp 935. American Chemical Society.
DOI:https://doi.org/10.1021/acs.jced.8b01218.9- Chattopadhyay, Madhab K. (2014). Use of antibiotics as feed additives: a burning
question. Front. Microbiol., V 5, Article: (334): pp 1-5. Sec. Antimicrobials, Resistance and
Chemotherapy Centre for Cellular and Molecular Biology (CSIR), Hyderabad, India.
https://doi.org/10.3389/fmicb.2014.00334. www.frontiersin.org.
10- Chowdhury, R., Islam, K. M. S., Khan, M. J., Karim, M. R., Haque, M. N., Khatun, M., and
Pesti G. M. (2009). Effect of citric acid, avilamycin, and their combination on the
performance, tibia ash, and immune status of broilers. Poultry Science, 88 (8) :pp 1616–
1622. DOI: https://doi.org/10.3382/ps.2009-00119.
URL:https://www.sciencedirect.com/science/article/pii/S0032579119389667.
11- Clardy, J., Fischbach, M. A., & Currie, C. R. (2009). The natural history of antibiotics.
Current biology : CB, 19(11), PP 437–441.DOI: https://doi.org/10.1016/j.cub.2009.04.001.
12- Demirel, G., Pekel, A.Y., Alp, M., and Kocabağlı, N. (2012). Effects of dietary
supplementation of citric acid, copper, and microbial phytase on growth performance
and mineral retention in broiler chickens fed a low available phosphorus diet. Journal
of Applied Poultry Research, 21 (2): pp 335-347, 2012. ISSN 1056-6171, DOI:
https://doi.org/10.3382/japr.2011-00416.
URL:https://www.sciencedirect.com/science/article/pii/S1056617119306233
13- Dibner, J. J. and J. D. Richards. (2005). Antibiotic growth promoters in agriculture:
history and mode of action. Poult. Sci. 84: pp 634-643. DOI:
https://doi.org/10.1093/ps/84.4.634
14- Ding, X.; Zhong, X.; Yang, Y.; Zhang, G.; Si, H. (2023). Citric Acid and Magnolol
Ameliorate Clostridium perfringens Challenge in Broiler Chickens. Animals, 13 (577):
pp 1-17. DOI: https://doi.org/10.3390/ani13040577.
15- EFSA. (2015). FEEDAP Panel (EFSA Panel on Additives and Products or Substances
used in Animal Feed). Scientific Opinion on the safety and efficacy of citric acid when
used as a technological additive (acidity regulator) for all animal species. EFSA Journal
2015;13(2):4010, 16 pp. DOI: https://doi.org/10.2903/j.efsa.2015.4009.
16- Elbaz, A.M., Ibrahim, N.S., Shehata, A.M., Mohamed, N.G., Abdel-Moneim, A.M.E.
(2021). Impact of multi-strain probiotic, citric acid, garlic powder or their combinations
on performance, ileal histomorphometry, microbial enumeration and humoral
immunity of broiler chickens. Trop Anim Health Prod 53 (115), 2021. DOI:
https://doi.org/10.1007/s11250-021-02554-0.17- Engberg, R.M., Hedemann, M.S. Leser., T.D. and Jensen. B.B. (2000): Effect of zinc
bacitracin and salinomycin on intestinal micro flora and performance of broilers. J.
Poult. Sci., 18: pp 5355-5358. DOI: https://doi.org/10.1093/ps/79.9.1311.
18- European Commission. (2005). IP/05/1687: Ban on antibiotics as growth promoters in
animal feed enters into effect. European Commission Website. Brussels, 22 December
2005. Retrieved from: https://ec.europa.eu/commission/presscorner/detail/en/IP_05_1687
19- Feed Additives Website. (2020). What Is Citric Acid (E330) In Food? Uses, Benefits,
Safety, Side Effects. Retrieved from: https://foodadditives.net/acidulents/citric-acid/
(05/02/2020).
20- Fik, Martin & Hrnčár, Cyril & Hejniš, Dávid & Hanusova, Emilia & Arpasova, Henrieta &
Bujko, Jozef. (2021). The Effect of Citric Acid on Performance and Carcass
Characteristics of Broiler Chickens. Scientific Papers Animal Science and Biotechnologies
54 (1): pp 187-192. URL:
https://www.researchgate.net/publication/352197856_The_Effect_of_Citric_Acid_on_Perf
ormance_and_Carcass_Characteristics_of_Broiler_Chickens.
21- Gauthier, R. (2002). Intestinal health, the key to productivity (The case of organic acids).
Precongreso Cientifico Avicola IASA, XXVII Convencion ANECA-WPDSA Puerto Vallarta,
Jal. Mexico. 30 April 2002.
https://www.researchgate.net/publication/313391701_Intestinal_health_the_key_to_produc
tivity_The_case_of_organic_acids
22- Ghazalah, A.A., A.M.Atta, K. Elkloub, M. EL. Moustafa and R. F. H. Shata, (2011). Effect
of Dietary Supplementation of Organic Acids Performance Nutrients Digestibility and
Health of Broiler Chicks. Int. J. Poultry Sci. 10 (3):pp 176-184. DOI:
https://doi.org/10.3923/ijps.2011.176.184.
URL:https://scialert.net/abstract/?doi=ijps.2011.176.184
23- Gulhane, Pranita. A., Gomashe, Ashok. V., and Lade, Sneha. (2014). Optimization of
Bacitracin Production from Bacillus licheniformis NCIM 2536. Int. J. Curr. Microbiol.
App. Sci (2014), 3(9): pp 819-829. ISSN: 2319-7706. URL: https://www.ijcmas.com/vol-3-
9/Pranita%20A.%20Gulhane1,%20ET%20AL.pdf.
24- Gunal, M., G. Yayli, O. Kaya, N. Karahan, and O. Sulak. (2006). the effects of antibiotic
growth promoter, probiotic or organic acid supplementation on performance, intestinal
microflora and tissue of broilers. Int. J. Poult. Sci., 5 (2): pp 149–155, 2006. DOIhttps://doi.org/10.3923/ijps.2006.149.155.
URL:https://scialert.net/abstract/?doi=ijps.2006.149.155.
25- Hahn, Fred. E. (ed.). (1979). Mechanism of Action of Antibacterial Agents, Chapter 1:
Bacitracin. (D. R. Storm & W. A. Toscano Jr). pp 1–17. Springer-Verlag Berlin ·
Heidelberg 1979. DOI: https://doi.org/10.1007/978-3-642-46403-4.
URL:https://link.springer.com/chapter/10.1007/978-3-642-46403-4_1.
26- Hajati, Hosna. (2018). Application of organic acids in poultry nutrition. Int J Avian &
Wildlife Biol. 2018; 3 (4): pp 324-329. Payame Noor University of Sari, Iran. DOI:
https://doi.org/10.15406/ijawb.2018.03.00114 . URL: https://www.european-poultryscience.
com/artikel.dll/eps-10-1399-eps-2015-97-
nourmohammadi_gq3tsobwgq3q.pdf?UID=F5CFB8379088FF108844F99B68D3C29E2C3
2F1C8894DBC
27- Haq, A., Ch, M.T., Ahmad, H., Shafi, J., Ashraf, M., Javed, M. Rehman, S. (2014). Effect of
dietary acidification with citric acid on carcass characteristics, haemogram and serum
metabolite values of broiler chicken. Pakistan Journal of Life and Social Sciences. 12: pp
36-41. E-ISSN: 2221-7630;P-ISSN: 1727-4915.
URL:https://www.researchgate.net/publication/288117362_Effect_of_dietary_acidification
_with_citric_acid_on_carcass_characteristics_haemogram_and_serum_metabolite_values_
of_broiler_chicken.
28- Henchion, M., Hayes, M., Mullen, A. M., Fenelon, M., & Tiwari, B. (2017). Future Protein
Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium.
Foods (Basel, Switzerland), 6(7), 53: pp 1-21. DOI: https://doi.org/10.3390/foods6070053.
URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5532560/#:~:text=In%20addition%2
0to%20increased,in%20a%20healthy%20diet.
29- Huyghebaert, G., & De Groote, G. (1997). The bioefficacy of zinc bacitracin in practical
diets for broilers and laying hens. Poultry science, 76(6), 849–856. DOI:
https://doi.org/10.1093/ps/76.6.849 .
30- Islam, M.Z., Khandaker, Z.H., Chowdhury, S.D. and Islam, K.M.S. (2008). Effect of citric
acid and acetic acid on the performance of broilers. Journal of the Bangladesh
Agricultural University 6 (2), 2008: pp 315–320. DOI: 10.3329/jbau.v6i2.4828. URL:
https://www.banglajol.info/index.php/JBAU/article/view/4828.
31- Islam, K. (2012). Use of citric acid in broiler diets. World's Poultry Science Journal, 68
(1): pp 104-118. Doi: https://doi.org/10.1017/S0043933912000116URL:https://www.cambridge.org/core/journals/world-s-poultry-sciencejournal/
article/abs/use-of-citric-acid-in-broilerdiets/
DA15C2C1F90667525BF2414DF3BFF646 .
32- Islam, K. M. S., Debi, M. R., Haque, R., and Uddin, M. M. (2021). Effect of citric acid in
low nutrient diet on growth and bone mineral metabolism of broiler. Bang. J. Anim. Sci.
50 (1): pp 36-42. DOI: https://doi.org/10.3329/bjas.v50i1.55567.
URL:https://www.banglajol.info/index.php/BJAS/article/view/55567 .
33- Katoch, S., Sharma, S., Sankhyan, V., Wadhwa, D., Sharma, A., & Kumar, S. (2023).
Growth studies in commercial broiler birds offered citric acid in formulated feed with
low mineral density. Tropical animal health and production, 55 (1), 33, PP 1-13. DOI:
https://doi.org/10.1007/s11250-022-03443-w.
URL:https://link.springer.com/article/10.1007/s11250-022-03443-w
34- Khan, R. U., Naz, S., Raziq, F., Qudratullah, Q., Khan, N. A., Laudadio, V., Tufarelli, V., &
Ragni, M. (2022). Prospects of organic acids as safe alternative to antibiotics in broiler
chickens diet. Environmental science and pollution research international, 29 (22): PP
32594–32604. DOI: https://doi.org/10.1007/s11356-022-19241-8.
35- Khan, Sohail Hassan., and Iqbal, Javid. (2016). Recent advances in the role of organic
acids in poultry nutrition. Journal of Applied Animal Research, 44 (1): PPM359-369. DOI:
http://dx.doi.org/10.1080/09712119.2015.1079527.
URL:https://www.tandfonline.com/doi/epdf/10.1080/09712119.2015.1079527?needAccess
=true&role=button
36- Khosravi, A; F. Boldaji; B. Dastar and Hasani, S., (2010). Immune Response and
Performance of Broiler Chicks Fed Protexin and Propionic Acid. International Journal
of Poultry Science, 9 (2): PP 188-191. DOI: https://doi.org/10.3923/ijps.2010.188.191.
37- Kirimura, Kohtaro; Yoshioka, Isato. (2019). 3.13-Citric Acid by Murray Moo-Young,
Comprehensive Biotechnology (Third Edition). Pergamon, 2019. PP 158-165, ISBN
9780444640475. DOI: https://doi.org/10.1016/B978-0-444-64046-8.00157-9. URL:
https://www.sciencedirect.com/science/article/pii/B9780444640468001579.
38- Kırkpınar, Figen., & Açıkgöz, Zümrüt. (2018). Chapter: Feeding. Animal Husbandry and
Nutrition. (Edited by Banu Yücel and Turgay Taşkin). Licensee IntechOpen. London,
SW7 2QJ, UNITED KINGDOM. DOI: 10.5772/intechopen.78618.
URL:https://www.intechopen.com/chapters/61960.39- Ko, K.Y., Mendonca, A.F., and Ahn, D.U. (2008). Influence of Zinc, Sodium Bicarbonate,
and Citric Acid on the Antibacterial Activity of Ovotransferrin Against Escherichia coli
O157:H7 and Listeria monocytogenes in Model Systems and Ham. Poultry Science, 87
(12): PP 2660-2670. ISSN 0032-5791. DOI: https://doi.org/10.3382/ps.2007-00503. URL:
https://www.sciencedirect.com/science/article/pii/S003257911940429X.
40- Lafontaine, A., Sanselme, M., Cartigny, Y. et al. (2013). Characterization of the transition
between the monohydrate and the anhydrous citric acid. J Therm Anal Calorim 112, PP
307–315.DOI:https://doi.org/10.1007/s10973-012-2798-0.
URL:https://link.springer.com/article/10.1007/s10973-012-2798-0.
41- Lambros, M., Tran, T. H., Fei, Q., & Nicolaou, M. (2022). Citric Acid: A Multifunctional
Pharmaceutical Excipient. Pharmaceutics, 14 (5), 972: PP 1-18. PMID: 35631557 PMCID.
PMC9148065.DOI:https://doi.org/10.3390/pharmaceutics14050972.
URL:http://www.ncbi.nlm.nih.gov/pmc/articles/pmc9148065/.
42- Lin, Y., Hu, S., Sun, Y., Jin, L., Wang, C., & Gao, Y. (2022). Effects of bacitracin zinc,
potassium diformate and lauric acid on duodenal digestive functions, intestinal
morphology and caecal microflora of broilers. Czech Journal of Animal Science, 67(2):
PP 65-74. DOI: 10.17221/123/2021-CJAS. URL: http://cjas.agriculturejournals.cz/artkey/cjs-
202202-0004_effects-of-bacitracin-zinc-potassium-diformate-and-lauric-acid-on-duodenaldigestive-
functions-intestinal-mor.php.
43- Liu, Xin. (2023). Chapter 3.3 :pKa of Organic Acids and Application of pKa to Predict
Acid-Base Reaction Outcome. Organic Chemistry I. Kwantlen Polytechnic University.
Open Education Resource (OER) LibreTexts Project (https://LibreTexts.org): PP 66-69.
URL:https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Organic_Chemistry_I_(L
iu)/03%3A_Acids_and_Bases-
_Organic_Reaction_Mechanism_Introduction/3.03%3A_pKa_of_Organic_Acids_and_App
lication_of_pKa_to_Predict_Acid-Base_Reaction_Outcome .
44- Makofane V., Ng’ambi J.W., Gunya B. (2022). The Effect of Citric Acid Supplementation
on Growth Performance, Digestibility and Linear Body Measurement of Ross 308
Broiler Chickens: A Review. Indian Journal of Animal Research. 56(4): PP 387-391. DOI:
10.18805/IJAR.BF-1433. URL: https://arccjournals.com/journal/indian-journal-of-animalresearch/
BF-1433.
45- Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic Use in
Agriculture and Its Consequential Resistance in Environmental Sources: PotentialPublic Health Implications. Molecules (Basel, Switzerland), 23(4), 795: PP 1-48. DOI:
https://doi.org/10.3390/molecules23040795.
URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017557/ .
46- Martínez Y., Paredes J., Avellaneda MC., Botello A., Valdivié M. (2022). Diets with
Ganoderma lucidum Mushroom Powder and Zinc-Bacitracin on Growth Performance,
Carcass Traits, Lymphoid Organ Weights and Intestinal Characteristics in Broilers.
Brazilian Journal of Poultry Science. 24 (1): PP 001-012. ISSN 1516-635X. DOI:
http://dx.doi.org/10.1590/1806-9061-2021-1474.
URL:https://www.scielo.br/j/rbca/a/Yc5ywY8PMbYRQqqKg3dpcZg/abstract/?lang=en.
47- Max B, Salgado JM, Rodríguez N, Cortés S, Converti A, Domínguez JM. (2010).
Biotechnological production of citric acid. Braz J Microbiol. 2010 Oct; 41 (4): PP 862-75.
DOI:https://doi.org/10.1590%2FS1517-83822010000400005.
URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769771/.
48- Melaku, M., Zhong, R., Han, H., Wan, F., Yi, B., & Zhang, H. (2021). Butyric and Citric
Acids and Their Salts in Poultry Nutrition: Effects on Gut Health and Intestinal
Microbiota. International journal of molecular sciences, 22 (19), 10392: PP 1-17. DOI:
https://doi.org/10.3390/ijms221910392.
49- Miller, Matthew. (2022). Poultry Expected To Continue Leading Global MeatImports as
Demand Rises (Article). USDA Economic Research Service - Feature: Poultry & Eggs.
August 01, 2022. https://www.ers.usda.gov/amber-waves/2022/august/poultry-expected-tocontinue-
leading-global-meat-imports-as-demand-rises
50- Mohammed, Hasan. A. (2016). Effect of utilization organic acid supplement on broiler
(ROS-308) feeding at pre-starter and starter period breeding on basic performance
parameters. Int. J. Adv. Res. Biol. Sci. (2016). 3(6): PP 76-81. ISSN: 2348-8069. URL:
www.ijarbs.com. SOI: http://s-o-i.org/1.15/ijarbs-2016-3-6-10.
51- National Center for Biotechnology Information (2023). PubChem Compound Summary
for CID 3083711, Bacitracin zinc. Retrieved May 24, 2023 from
https://pubchem.ncbi.nlm.nih.gov/compound/Bacitracin-zinc.
52- National Center for Biotechnology Information (2023). PubChem Compound Summary
for CID 311, Citric Acid. Retrieved May 24, 2023 from
https://pubchem.ncbi.nlm.nih.gov/compound/Citric-Acid.53- National Center for Biotechnology Information (2023). PubChem Compound Summary
for CID 21863217, Citric acid sodium citrate. Retrieved May 24, 2023 from
https://pubchem.ncbi.nlm.nih.gov/compound/Citric-acid-sodium-citrate.
54- Nourmohammadi, R., and Khosravinia, H. (2015). Acidic stress caused by dietary
administration of citric acid in broiler chickens. Arch. Anim. Breed., 58, PP 309–315.
Leibniz Institute for Farm Animal Biology. DOI: https://doi.org/10.5194/aab-58-309-2015.
URL: www.arch-anim-breed.net/58/309/2015/.
55- Nourmohammadi, R., Hosseini, S.M., Farhangfar, H., and Bashtani, M. (2012). Effect of
citric acid and microbial phytase enzyme on ileal digestibility of some nutrients in
broiler chicks fed corn-soybean meal diets. Italy J. Anim. Sci. 11 (7): PP 36-40. DOI:
http://dx.doi.org/10.4081/2326.
56- Nourmohammadi, R., Khosravinia, H., and Afzali, N. (2015). Effects of high dietary levels
of citric acid on productive performance, serum enzyme activity, calcium and
phosphorus retention and immune response in broiler chickens. Europ.Poult.Sci., 79.
2015, PP 1-9. ISSN 1612-9199, © Verlag Eugen Ulmer, Stuttgart. DOI:
http://dx.doi.org/10.1399/eps.2015.97.
57- Ocak. N. and Sivri. F. (2007). Liver colorations as well as performance and digestive
tract characteristics of broilers may change as influenced by stage and schedule of feed
restriction. J. of Anim. Physiology and Anim. Nutr. l7: PP 312-320. DOI:
https://doi.org/10.1111/j.1439-0396.2007.00746.x.
58- Paras, Michael. S., Purnamasari, Listya., dela Cruz, Joseph F. (2022). Effect of Dietary
Citric Acid and Microbial Phytase on the Growth Performance of Broiler Chickens.
Jurnal Ilmu Ternak Universitas Padjadjaran, December 2022, 22(2):PP 79-87. ISSN 1410-
5659. DOI: 10.24198/jit.v22i2.40047. URL: http://jurnal.unpad.ac.id/jurnalilmuternak.
59- Patel P, Wermuth HR, Calhoun C, et al. Antibiotics. [Updated 2023 May 26]. In: StatPearls
[Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from:
https://www.ncbi.nlm.nih.gov/books/NBK535443/
60- Ragab, M. S., H. M. Abdel Wahed, E. M. Omar, and W. H. A. Mohamed (2012). Effect of
adding citric and lactic acids to broiler diets different in their protein content on
productive performance, bacterial count and some blood parameters. Egyptian J.
Nutri_on and Feeds, 15 (3): PP 613-629.
61- Reis, Matheus. de Paula., Rodrigues, Paulo Borges., Cantarelli, Vinícius de Souza.,
Meneghetti, Camila., Garcia-Junior, Antonio Amandio Pinto., Ribeiro de Lima, RenatoFassani, Edison José., Naves, Luciana de Paula. (2014). Levels of zinc bacitracin used to
improve the performance of broilers. Ciência Rural, Santa Maria, v.44, n.6, p.1093-1099,
Jun, 2014. PP 1094-1099. ISSN 0103-8478. URL:
https://www.researchgate.net/publication/291621765.
62- Ruangpanit, Yuwares., Matsushita, Koichi., Mukai, Kazuhisa., and Kikusato, Motoi. (2020).
Effect of trehalose supplementation on growth performance and intestinal morphology
in broiler chickens. Veterinary and Animal Science, 10 (2020): 100142. ISSN 2451-943X.
DOI:https://doi.org/10.1016/j.vas.2020.100142.
URL:https://www.sciencedirect.com/science/article/pii/S2451943X20300557
63- Sabour, S., Tabeidian, S.A., and Sadeghi, G. (2019). Dietary organic acid and fiber sources
affect performance, intestinal morphology, immune responses and gut microflora in
broilers. Animal Nutrition, 5(2): PP 156-162. DOI:
https://doi.org/10.1016/j.aninu.2018.07.004.
URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544572/pdf/main.pdf
64- Saki, Ali. A., Harcini, R. N., Rahmatnejad, E., and Salary, J. (2012). Herbal additives and
organic acids as antibiotic alternatives in broiler chickens diet for organic production.
African Journal of Biotechnology, 11 (8): PP 2139-2145. DOI:
https://doi.org/10.5897/AJB11.797. URL:
https://www.ajol.info/index.php/ajb/article/view/100474.
65- Santativongchai, P.; Tulayakul, P.; Ji, Y.; and Jeon, B..(2022). Synergistic Potentiation of
Antimicrobial and Antibiofilm Activities of Penicillin and Bacitracin by Octyl Gallate,
a Food-Grade Antioxidant, in Staphylococcus epidermidis. Antibiotics 2022, 11, 1775.
DOI: https://doi.org/10.3390/antibiotics 11121775.
66- Shahan Azeem, Muhammad Akram Muneer, Liaquat Ahmad, Sameera Akhtar and Talat
Naseer Pasha. (2022). Effects of Antibiotics on Growth Performance, Immune Response,
and Intestinal Microflora of Broilers. Pakistan J. Zool., 54: PP 2629-2637 .DOI:
https://dx.doi.org/10.17582/journal.pjz/20210916080919.
67- Smith, H. W., & Tucker, J. F. (1975). The effect of feeding diets containing permitted
antibiotics on the faecal excretion of Salmonella typhimurium by experimentally
infected chickens. The Journal of hygiene, 75(2), PP 293–301. DOI:
https://doi.org/10.1017/s0022172400047318.
68- Tan, S. Y., & Tatsumura, Y. (2015). Alexander Fleming (1881-1955): Discoverer of
penicillin. Singapore medical journal, 56(7), PP 366–367. DOIhttps://doi.org/10.11622/smedj.2015105.
URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4520913/ .
69- Thema, K.K. (2019). Effects of selected zootechnical feed additives as alternatives to
zinc-bacitracin antibiotic growth promoter in broiler diets. Thesis. Boloka, open access
Institutional Repository of the North-West University (NWU-IR). Natural and Agricultural
Sciences. North-West University. South Africa. P: 1-131.
URL:https://repository.nwu.ac.za/bitstream/handle/10394/35490/Thema_KK.pdf?sequence
=1&isAllowed=y.
70- Tuoying, Ao. (2005). Exogenous enzymes and organic acids in the nutrition of broiler
chicks: effects on growth performance and in vitro and in vivo digestion .University of
Kentucky Doctoral Dissertations. Paper 241.n. URL:
https://uknowledge.uky.edu/gradschool_diss/241/.
71- Woong Kim, J., Hyuk Kim, J., & Yong Kil, D. (2015). Dietary organic acids for broiler
chickens: a review. Revista Colombiana de Ciencias Pecuarias, 28(2), PP 109-123. ISSN:
0120-0690. URL: https://www.redalyc.org/articulo.oa?id=295036221002.
72- Xue, J. J., Huang, X. F., Liu, Z. L., Chen, Y., Zhang, Y. K., Luo, Y., Wang, B. W., Wang, Q.
G., & Wang, C. (2023). Effects of citric acid supplementation on growth performance,
intestinal morphology and microbiota, and blood parameters of geese from 1 to 28 days
of age. Poultry science, 102(2), 102343: PP 1-8. DOI:
https://doi.org/10.1016/j.psj.2022.102343.