References
Aaronson, S., Dhawale, S. W., Patni, N. J., Deangelis, B., Frank, O., & Baker, H. (1977). The Cell Content and Secretion of Water-Soluble Vitamins by Several Freshwater Algae. Arch. microbiol., 112, pp. 57-29.
Abdel-Karim, O. H., Gheda, S. F., Ismail, G. A., & Abo-Shady, A. M. (2020). Phytochemical Screening and antioxidant activity of Chlorella vulgaris. Delta Journal of Basic and Applied Sciences, 41, pp. 76-86.
Abd El-Razik, M., & Mohamed, A. (2013). Utilization of acid casein curd enriched with Chlorella vulgaris biomass as substitute of egg in mayonnaise production. World Applied Sciences Journal. 26(7), pp. 917–925.
Acquah, C., Ekezie, F.-G., & Udenigwe, C. C. (2021). Potential applications of microalgae-derived proteins and peptides in the food industry. In T. Lafarga, & G. Acién, Cultured Microalgae for the Food Industry- Current and Potential Applications (pp. 97-126). Elsevier Inc.
Agustina, S., Aidha, N. N., & Oktarina, E. (2021). The extraction of antioxidants from Chlorella vulgaris for cosmetics. IOP Conf. Series: Materials Science and Engineering, 1011, p. 012057. doi:10.1088/1757-899X/1011/1/012057
Andrade, L. M., Andrade, C. J., Dias, M., Nascimento, C., & Mendes, M. A. (2018). Chlorella and spirulina microalgae as sources of functional foods. Nutraceuticals, and Food Supplements, 6(1), pp. 45-58.
AOAC. (2000). Official Methods of Analysis of AOAC international. 17th Ed. ed: Horwitz, W. Association of Official Analytical Chemists, Maryland, USA.
Aramouni, F., & Abu-Ghoush, M. (2011). Physicochemical and sensory characteristics of no-bake wheat–soy snack bars. J Sci Food Agri, 91, pp. 44–51.
Awobusuyi, T. D., Siwela, M., & Pilla, K. (2020). Sorghum–Insect Composites for Healthier Cookies: Nutritional, Functional, and Technological Evaluation. Foods, 9(10), p. 1427.
Badawy, T. E. M. (2005). Physiological studies on some green algae. Ph.D. Thesis. Faculty of Agriculture. Cairo University. Egypt.
Balaji, M., Thamilvanan, D., Chidambara Vinayagam, S., & Balakumar, B. (2017). Anticancer, antioxidant activity and GC-MS analysis of selected micro algal members of chlorophyceae 13. Int. J. Pharm. Sci. Res., 8(8), pp. 3302–3314.
Baldwin, B. G. (1992). Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol Phylogenet Evol, 1, 3-16.
Bandarra, N. M., P.A. Pereira, I. Batista and M.H. Vilela. (2003). Fatty acids, sterols and tocopherol in Isochrysis galbana. Journal of Food Lipids. 18:25-34.
Baracos, V., Martin, L., Korc, M., Guttridge, D., & Fearon, K. (2018). Cancer-associated cachexia. Nature Reviews Disease Primers, 4, p. 17105.Barsanti, L., & Gualtieri, P. (2006). Algae: anatomy, biochemistry, and biotechnology. Florida: CRC Press Taylor & Francis Group.
Batista, A., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., et al. (2017). Microalgae biomass as an alternative ingredient in cookies: sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research, 26, pp. 161–171.
Becker, E. W. (1988). Micro-algae for human and animal consumption. In M. M. Borowitzka, & L. Borowitzka, Micro-algal biotechnology (pp. 222-256). Cambridge University Press.
Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25, pp. 207– 10.
Becker, E. W. (2013). Microalgae for human and animal nutrition. In A. Richmond, & Q. Hu, Handbook of Microalgal Culture: Applied Phycology and Biotechnology (2 ed., pp. 461–503). John Wiley & Sons, Ltd.
Beheshtipour, H., Mortazavian, A. M., Haratian, P., & Darani, K. K. (2012). Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. Eur Food Res Technol, 235, pp. 719–728.
Beheshtipour, H., Mortazavian, A. M., Mohammadi, R., Sohrabvandi, S., & Khosravi-Darani, K. (2013). Supplementation of Spirulina platensis and Chlorella vulgaris Algae into Probiotic Fermented Milks. Comprehensive Reviews in Food Science and Food Safety, 12(2), pp. 144-154.
Beijerinck, M. (1890). Kulturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen. Botanische Ztg. 48, p. 729.
Bellinger, E. G., & Sigee, D. C. (2015). Freshwater Algae: Identification, Enumeration and Use as Bioindicators (2 ed.). Chichester, UK: John Wiley & Sons, Ltd.
Bellinger, E., & Sigee, D. (2010). Freshwater Algae: Identification and Use as Bioindicators. New York: John Wiley & Sons.
Bi, Z. and B. He. (2013). Characterization of microalgae for the purpose of biofuel production. Transactions of the ASABE. 56(4), pp. 1529-1539.
Bimbo, F., Bonanno, A., Nocella, G., Viscecchia, R., Nardone, G., De Devitiis, B., et al. (2017). Consumers’ acceptance and preferences for nutrition-modified and functional dairy products: a systematic review. Appetite, 113, pp. 141–154.
Birch, C. S., & Bonwick, G. A. (2018). Ensuring the future of functional foods. International Journal of Food Science and Technology, pp. 1-19.
Bischoff, H. W., & Bold, H. C. (1963). Phycological studies. Some soil algae from Enchanted Rock and related algal species (IV ed., Vol. 6318). Texas: University of Texas Publications.
Bito, T., Bito, M., Asai, Y., Takenaka, S., Yabuta, Y., Tago, K., et al. (2016). Characterization and quantitation of vitamin B12 compounds in various Chlorella supplements. J. Agric. Food Chem., 64, pp. 8516–8524.
Bito, T., Okumura, E., Fujishima, M., & Watanabe, F. (2020). Potential of Chlorella as a Dietary Supplement to Promote Human Health. Nutrients, 12(2524), pp. 1-22.
Bito, T., Tanioka, Y., & Watanabe, F. (2018). Characterization of vitamin B12 compounds from marine foods. Fish. Sci., 84, pp. 747–755.Boesveldt, S., Bobowski, N., McCrickerd, K., Maître, I., Sulmont-Rossé, C., & Forde, C. (2018). The changing role of the senses in food choice and food intake across the lifespan. Food Quality and Preference, 68, pp. 80–89.
Bogue, J., & Ryan, M. (2000). Market-Oriented New Product Development: Functional Foods and the Irish Consumer. Agribusiness Discussion Paper 27 (Vol. 27). Cork: University College, Department of Food Economics. National University of Ireland.
Bolanho, B., Egea, M., Jácome, A., Campos, I., Carvalho, J., & Danesia, E. (2014). Antioxidant and nutritional potential of cookies enriched with Spirulina platensis and sources of fibre. J. Food Nutr. Res., 53, pp. 171–179.
Bong, S., & Loh, S. (2013). A study of fatty acid composition and tocopherol content of lipid extracted from marine microalgae, Nannochloropsis oculata and Tetraselmis suecica, using solvent extraction and supercritical fluid extraction. Int. J. Food Res., 20, pp. 721-729.
Boobier, W., Baker, J., & Davies, B. (2006). Development of a healthy biscuit: an alternative approach to biscuit manufacture. Nutrition Journal, 5(7), pp. 1-7.
Boutarfa, S., Senoussi, M., Gonzalez-Silvera, D., López-Jiménez, J., & Aboal, M. (2022, April 8). The Green Microalga Coelastrella thermophila var. globulina (Scenedesmaceae, Chlorophyta) Isolated from an Algerian Hot Spring as a Potential Source of Fatty Acids. Life, 12, 560-570.
Bozarth, A., UG. Maier and S. Zauner. (2009). Diatoms in biotechnology: modern tools and applications. Appl Microbiol Biotechnol. 82 (2): 195-201.
Brown, M., & Miller, K. (1992). The ascorbic acid content of eleven species of microalgae used in mariculture. J. Appl. Phycol., 4, pp. 205–215.
Brown, M., Mular, M., Miller, I., Trenerry, C., & Farmer, C. (1999). The vitamin content of microalgae used in aquaculture. J. Appl. Phycol., 11(3), pp. 247–255.
Burlew, JS. (1953). Algal culture from laboratory to pilot plant. Washington DC: Carnegie Institution of Washington publication. p.357.
Büyükkaragöz, A., Bas, M., Sağlam, D., & Cengiz, Ş. E. (2014). Consumers' awareness, acceptance and attitudes towards functional foods in Turkey. International Journal of Consumer Studies, 38(6), pp. 628-635.
Cabrita, A. R. J., M. R. G. Maia, H. M. Oliveira, I. Sousa-Pinto, A. A. Almeida, E. Pinto and A. J. M. Fonseca. (2016). Tracing seaweeds as mineral sources for farm-animals. J. Appl. Phycol. 28, pp. 3135–3150.
Caporgno, M., & Mathys, A. (2018). Trends in Microalgae Incorporation into Innovative Food Products with Potential Health Benefits. Front Nutr, 5(58), pp. 1-10.
Carocho, M., Morales, P., & Ferreira, I. (2018). Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci. Technol., 71, pp. 107–120. doi:10.1016/j.tifs.2017.11.008
Casales-Garcia, V., Museros, L., Sanz, I., Falomir, Z., & Gonzalez-Abril, L. (2020). Extracting feeling from food colour. In A. Abreu, J. V. Carvalho, D. Liberato, & I. S. Galdames, Advances in Tourism, Technology and Smart Systems (pp. 15-24). Singapore: Springer.
Christaki, E., Florou-Paneri, P., & Bonos, E. (2011). Microalgae: a novel ingredient innutrition. Int. J. Food Sci. Nutr., 62, pp. 794–799.Coulombier, N., Jauffrais, T., & Lebouvier, N. (2021). Antioxidant Compounds from Microalgae: A Review. Marin Drugs, 19(549), pp. 1-30. doi:10.3390/md19100549
Crawford, J. (2018). Cancer cachexia: Are we ready to take a step forward? Cancer, 124, pp. 456–458.
Croft, M., Lawrence, A., Raux-Deery, E., Warren, M., & Smith, A. (2005). Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature, 438, pp. 90–93.
Cronn, R. C., Small, R. L., Haselkorn T., & Wendel, J. F. (2002). Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am J Bot, 89, 707-725.
Csiro, L. D. (2011). Wheat gluten: production, properties and application. In G. O. Phillips, & P. A. Williams, Handbook of food proteins (Vol. 22, pp. 267-288). Woodhead Publishing Limited.
Dagnelie, P., van Staveren, W., & van den Berg, H. (1991). Vitamin B-12 from algae appears not to be bioavailable. Am. J. Clin. Nutr, 53, pp. 695–697.
Dahiya, A. (2014). Bioenergy: Biomass to Biofuel (1st ed. ed.). Boston: Academic Press.
Dapra, L. (2016). Genotyping, Cryopreservation and Bioactive Compounds of Aero-terrestrial Algae. Innsbruck: Universität Innsbruck.
Das, A., U. Raychaudhuri and R. Chakraborty. (2012). Cereal based functional food of Indian subcontinent: a review. Journal of food science and technology. 49(6): 665–672.
De Roeck-Holtzhauer Y., I. Quere and C. Claire. (1991). Vitamin analysis of five planktonic microalgae and one macroalga. Journal of Applied Phycology. 3, pp. 259-264.
Del Mondo, A., Smerilli, A., Sané, E., Sansone, C., & Brunet, C. (2020). Challenging microalgal vitamins for human Health. BMC, 19(201), pp. 1-23.
Dillard, G. E. (1989). Freshwater algae of the southeastern United States, part 1 Chlorophyceae: Volvocales, Tetrasporales and Chlorococcales. Bibl. Phycol. 81, p. 801.
Dillard, G. E. (2007). Freshwater algae of the southeastern United States, part 8. Chrysophyceae, Xanthophyceae, Cryptophyceae and Dinophyceae. Bibl. Phycol., 112, p. 127.
Donato, M., M.H. Vilela, and N. M. Bandarra. (2003). Fatty acids, sterols, α-tocopherol and total carotenoids composition of Diacronema vlkianum. Journal of Food Lipids, 10, pp: 267-276.
Dubouzet, J. G., & Shinoda, K. (1999). Relationships among old and new world Alliums according to ITS DNA sequence analysis. Theor. Appl. Genet 98: 422-433.
Edelmann, M., Aalto, S., Chamlagain, B., Kariluoto, S., & Piironen, V. (2019). Riboflavin, niacin, folate and vitamin B12 in commercial microalgae powders. Journal of Food Composition and Analysis, 82, p. 103226.
El-fayoumy, E. A., Shanab, S. M., Gaballa, H. S., Tantawy, M. A., & Shalaby, E. A. (2021). Evaluation of antioxidant and anticancer activity of crude extract and different fractions of Chlorella vulgaris axenic culture grown under various concentrations of copper ions. BMC Complementary Medicine and Therapies, 21(51), pp. 1-16. doi:10.1186/s12906-020-03194-x
Engel, R., L. Abrankó, É. Stefanovits-Bányai and P. Fodor. (2010). Simultaneous determination of water soluble vitamins in fortified food products. Acta Alimentaria 39 (1): 48-58.Enzing, C., Ploeg, M., Barbosa, M., & Sijtsma, L. (2014). Microalgae-Based Products for the Food and Feed Sector: An Outlook for Europe. (M. Vigani, C. Parisi, & E. R. Cerezo, Eds.) Luxembourg, European Union: European Commission, Joint Research Centre, Institute for Prospective Technological Studies.
FAO, WHO. World Health Organization. (2004). Vitamin and Mineral Requirements in Human Nutrition. 2ed edition. http://www.who.int/nutrition/publications/micronutrients/9241546123/en/2004. Retrieved from May 2019.
Faridi, H., Gaines, C., & Finney, P. (1994). Soft wheat quality in production of cookies and crackers. In W. Bushuk, & V. Rasper, Wheat (pp. 154-168). Boston, MA, USA: Springer.
Favas, R., Morone, J., Martins, R., Vasconcelos, V., & Lopes, G. (2021). Cyanobacteria and microalgae bioactive compounds in skin-ageing: potential to restore extracellular matrix filling and overcome hyperpigmentation. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), pp. 1829–1838.
Fawley, M. W., & Fawley, K. P. (2021). Identification of Eukaryotic Microalgal Strains. Journal of applied phycology, 32(5), pp. 2699–2709.
FDA, Food and Drug Administration, Department of Health and Human Services. U. S. 2019. Publication Code: DGDL54. https://epublication.fda.gov/epub/ePubHome.xhtml?faces-redirect=true#, Retrieved from May 2019.
Fernandes, B., Dragone, G., Abreu, A., Geada, P., Teixeira, J., & Vicente, A. (2012). Starch determination in Chlorella vulgaris – a comparison between acid and enzymatic methods. J Appl Phycol., 24, pp. 1203–1208.
Forest, H. S. (1954). Handbook of Algae. Knoxville: University of Tennessee Press.
Fradique, M., Batista, A., Nunes, M., Gouveia, L., Bandarra, N., & Raymundo, A. (2010). incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products, Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture, 90(10), pp. 1656–1664.
Galasso, C., Gentile, A., Orefice, I., Ianora, A., Bruno, A., Noonan, D. M., et al. (2019). Microalgal Derivatives as Potential Nutraceutical and Food Supplements for Human Health: A Focus on Cancer Prevention and Interception. Nutrients, 11(6), pp. 1226.
Garcia, J., de Vicente, M., & Galan, B. (2017). Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol., 10, pp. 1017–24.
Gauthier, M. R., Senhorinho, G. N., & Scott, J. A. (2020). Microalgae under environmental stress as a source of antioxidants. Algal Research, 52, p. 102104. doi:10.1016/j.algal.2020.102104
Geitler, L. (1931). Cyanophyceae. Germany: Koeltz Scientific Books for Edition Karin Koeltz.
Gelgor, R. D., Ozcelik, D., & Haznedaroglu, B. Z. (2022). Effects of baking on the biochemical composition of Chlorella vulgaris. Algal Research, 65(102716).
Gennaro, M. C., & Bertolo, P. L. (1990). L-Ascorbic Acid Determination in Fruits and Medical Formulations by Ion Interaction Reagent Reverse Phase HPLC Technique. Journal of Liquid Chromatography, 13(7), pp. 1419-1434.Goecke, F., Noda, J., Paliocha, M., & Gislerød, H. (2020). Revision of Coelastrella (Scenedesmaceae, Chlorophyta) and first register of this green coccoid microalga for continental Norway. World J. Microbiol. Biotechnol., 36, 149.
Goiris, K., Van Colen, W., Wilches, I., Le n-Tamariz, F., De Cooman, L., & Muylaert, K. (2015). Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Research, 7, pp. 51-57.
González, L., Cañizares, R., & Baena, S. (1997). Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol, 60, pp. 259–262.
Görs, M., Schumann, R., Hepperle, D., & Karsten, U. (2009). Quality analysis of commercial Chlorella products used as dietary supplement in human nutrition. J Appl Phycol, pp. 1-12.
Gouveia, L., Batista, A., Miranda, A., Empis, J., & Raymundo, A. (2007). Chlorella vulgaris biomass used as coloring source in traditional butter cookies. Innovative Food Sci Emerg Technol., 8, pp. 433–6.
Gouveia, L., Batista, A., Sousa, I., Raymundo, A., & Bandarra, N. (2008). Microalgae in Novel Food Products. In K. Papadopoulos (Ed.), Food Chemistry Research Developments (pp. 75-112). Hauppauge, NY, USA: Nova Science Publishers.
Graça, C., Fradinho, P., Sousa, I., & Raymundo, A. (2018). Impact of Chlorella vulgaris on the rheology of wheat flour dough and bread texture. LWT Food Science and Technology, 89, pp. 466–474.
Graham, W. D., & Annette, D. (1992). Determination of ascorbic and dehydroascorbic acid in potatoes (Solanum tuberosum) and strawberries using ion-exclusion chromatography. Chromatogr, 594, pp. 187-194.
Grobbelaar, J. (2003). Quality control and assurance: crucial for the sustainability of the applied phycology industry. J Appl Phycol, 15, pp. 209–215.
Guedes, É., Silva, T., Aguiar, J., Barros, L., Pinotti, L., & Sant'Ana, A. (2013). Cytotoxic activity of marine algae against cancerous cells. Revista Brasileira de Farmacognosia, 23, pp. 668-673.
Guil-Guerrero, J., Navarro-Juárez, R., López-Mart nez, J., Campra-Madrid, P., Rebolloso-Fuentes, M., (2004). Functional properties of the biomass of three microalgal species. J Food Eng, (65), pp. 511-517.
Guiry, M. D. (2012). How Many Species of Algae Are There? Journal of phycology, 48(5), pp. 1057–1063.
Guiry, M. D. (2021). AlgaeBase: A Global Database for Algae. Current Science, 121(1), pp. 10-11.
Guiry, M., & Guiry, G. (2014). Coelastrella Chodat, 1922. (M. Guiry, Editor, & National University of Ireland, Galway) Retrieved 4 27, 2022, from AlgaeBase: https://www.algaebase.org/search/genus/detail/?genus_id=45299
Guiry, M., & Guiry, G. (2019). Asterarcys Comas Gonzáles, 1981. (M. Guiry, Editor, & National University of Ireland, Galway.) Retrieved 4 27, 2022, from algaebase: https://www.algaebase.org/search/genus/detail/?genus_id=45139Guiry, M., Guiry, M., & Guiry, G. (2022). Chlorella vulgaris Beijerinck 1890. (National University of Ireland, Galway) Retrieved April 12, 2022, from algaebase: https://www.algaebase.org
Guiry, M.D. & Guiry, G.M. (2022). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; searched on August 21, 2022. June 06, 2022 05:00 AM Eastern Daylight Time.
Gulati, O., & Berry, O. (2006). Legislation relating to nutraceuticals in the European Union with a particular focus on botanical-sourced products. Toxicology, 221, pp. 75–87.
Gupta, R. K., S. S. Gangoliya and N. K. Singh. (2015). Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 52(2):676–684.
Habashya, N. H., Abu Serie, M. M., Attia, W. E., & Abdelgaleil, S. A. (2018). Chemical characterization, antioxidant and anti-inflammatory properties of Greek Thymus vulgaris extracts and their possible synergism with Egyptian Chlorella vulgaris. Journal of Functional Foods, 40, pp. 317–328. doi:10.1016/j.jff.2017.11.022
Hailu, G., Boecker, A., Henson, S., & Cranfield, J. (2009). Consumer valuation of functional foods and nutraceuticals in Canada. A conjoint study using probiotics. Appetite, 52(2), pp. 257-265.
Hall, J. D., Fucikova, K., LO, C., Lewis, L. A., & Karol, K. G. (2010). An assessment of proposed DNA barcodes in freshwater green algae. Cryptogamie Algologie, 31(4), pp. 529–555.
Hall, T. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, pp. 95-98.
Hazley, D., Stack, M., Walton, J., McNulty, B. A., & Kearney, J. M. (2022, January 20). Food neophobia across the life course: Pooling data from five national cross-sectional surveys in Ireland. Appetite, 171(105941), pp. 1-10.
Heimann, K., Huerlimann, R., (2015). Chapter 3 - Microalgal Classification: Major Classes and Genera of Commercial Microalgal Species. In: Kim, S.-K. (Ed.), Handbook of Marine Microalgae. Academic Press, Boston, 978-0-12-800776-1, pp. 25–41. https://doi.org/10.1016/B978-0-12-800776-1.00003-0.
Hershkovitz, M. A., & Lewis, L. A. (1996). Deep-level diagnostic value of the rDNA-ITS region. Mol Biol Evol, 13, 1276-1295.
Hershkovitz, M. A., Zimmer, E. A., & Hahn, W. J. (1999). Ribosomal DNA sequences and angiosperm systematics. In: P.M. Hollingsworth, R.M. Bateman and R.J. Gornall eds. Molecular systematics and plant evolution. Taylor & Francis, London pp. 268-326.
Hess, J. M., & Slavin, J. L. (2017). Healthy snacks: using nutrient profiling to evaluate the nutrient-density of common snacks in the United States. Journal of Food Science, 82(9), pp. 2213–2220.
Heuvel, E. v., Newbury, A., & Appleton, K. M. (2019). The Psychology of Nutrition with Advancing Age: Focus on Food Neophobia. Nutrients, 11(151), pp. 1-13.
HHS, Services, U. D., USDA, & Agriculture, U. D. (2015). 2015–2020 Dietary Guidelines for Americans (8th ed.). U.S. Department of Health and Human Services and U.S. Department of Agriculture.Hillis, D. M., & Dixon, M. T. (1991). Ribosomal DNA: Molecular Evolution and Phylogenetic Inference. The Quarterly Review of Biology, 66(4), pp. 411-453.
Hoseney, R., Wade, P., & Finley, J. (1988). Soft wheat products. In Y. Pomeranz, Wheat Chemistry and Technology (3 ed., Vol. II, pp. 407–456). USA: American Association of Cereal Chemists Monograph Series.
Hossain, A., Brennan, M., Mason, S., Guo, X., Zeng, X., & Brennan, C. (2017). The effect of astaxanthin-rich microalgae “Haematococcus pluvialis” and wholemeal flours incorporation in improving the physical and functional properties of cookies. Foods, 6(8), p. 57.
Hsiao, C., Chatterton, N. J., Asay, K. H., & Jensen, K. B. (1994). Phylogenetic relationships of 10 grass species: An assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. Genome, 37(1), pp.112-120.
Huss, V., & Sogin, M. (1990). Phylogenetic Position of Some Chlorella Species within the Chlorococcales Based upon Complete Small-Subunit Ribosomal RNA Sequences. Journal of Molecular Evolution, 31, pp. 432-442.
Huss, V., Frank, C., Hartmann, E., Hirmer, M., Kloboucek, A., Seidel, B., et al. (1999). Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). Phycologia, 35(3), pp. 587–598.
Hwang, U.-W., & Kim, W. (1999). General properties and phylogenetic utilities of nuclear ribosomal DNA and mitochondrial DNA commonly used in molecular systematics. The Korean Journal of Parasitology, 37(4), pp. 215-228.
Igual, M., Uribe-Wandurraga, Z. N., García-Segovia, P., & Martínez-Monzo, J. (2021). Microalgae-enriched breadsticks: Analysis for vitamin C, carotenoids, and chlorophyll a. Food Science and Technology International, 0(0), pp. 1-6.
Islam, M., Alsenani, F., & Schenk, P. (2018). Microalgae as a Sustainable Source of Nutraceuticals. In V. K. Gupta, H. Treichel, V. Shapaval, L. Antonio de Oliveira, M. G. Tuohy, Microbial Functional Foods and Nutraceuticals (1 ed., pp. 1-19). John Wiley & Sons Ltd.
ISO, EN ISO 8589. (2010). Sensory Analysis; General Guidance for the Design of Test Rooms.
Jaeger, S., Rasmussen, M., & Prescott, J. (2017). Relationships between food neophobia and food intake and preferences: Findings from a sample of New Zealand adults. Appetite, 116, pp. 410–422.
Jalilian, N., Najafpour, G., & Khajouei, M. (2019). Enhanced vitamin B12 production using chlorella vulgaris. International Journal of Engineering (IJE), IJE Transactions A: Basics, 32(1), pp. 1-9.
Jäpelt, R., & Jakobsen, J. (2013). Vitamin D in plants: A review of occurrence, analysis, and biosynthesis. Frontiers in Plant Science. 4, p. 136.
Jeon, J., Kwon, J., Kang, S. et al. (2014). Optimisation of culture media for large-scale lutein production by heterotrophic Chlorella vulgaris. Biotechnology Progress, 30, pp. 736–743.
John, D. M., Whitton, B. A., & Brook, A. J. (2011). The Freshwater Algal Flora of the British Isles. An Identification Guide to Freshwater and Terrestrial Algae (2 ed.). Cambridge, UK: Cambridge University Press.Jorge, E. M., H. P. Wolfgang and B. Peter. (2008). Biofortified crops to alleviate micronutrient malnutrition. Current opinion in plant biology. 11, pp. 166–170.
Jung, H., Ok, H., Park, M., Kim, J. & Kwon, O. (2016). Bioavailability of carotenoids from chlorella powder in healthy subjects: a comparison with marigold petal extract. Journal of Functional Foods, 21, 27–35.
Kahlert, M., Albert, R.-L., Anttila, E. L., Bengtsson, R., Bigler, C., Eskola, T., et al. (2008). Harmonization is more important than experience - results of the first Nordic–Baltic diatom intercalibration exercise 2007 (stream monitoring). J. Appl. Phycol., 20, pp. 227-235.
Kai Ru, I. T., Sung, Y. Y., Jusoh, M., Abdul Wahid, M. E., & Nagappan, T. (2020). Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, 1(1), pp. 2-11.
Kay, R. A. and L. L. Barton. (1991). Microalgae as food and supplement. Critical Reviews in Food Science and Nutrition. 30(6), pp. 555-573.
Kent, M., Welladsen, H., Mangott, A., & Li, Y. (2015). Nutritional Evaluation of Australian Microalgae as Potential Human Health Supplements. (S. Kumar, Ed.) PLoS ONE, 10(2), p. e0118985.
Kent, T., Lapik, Y. R., & Pestov, D. G. (2009). The 5′ external transcribed spacer in mouse ribosomal RNA contains two cleavage sites. RNA, 15(1), pp. 14-20.
Kessler, E. (1976). Comparative physiology, biochemistry, and the taxonomy of Chlorella (Chlorophyceae). Plant Syst. Evol., 125, pp. 129-138.
Kessler, E., & Huss, V. (1992). Comparative physiology and biochemistry and taxonomic assignment of the Chlorella (Chlorophyceae) strains of the Culture Collection of the University Texas at Austin. J Phycol, 28(4), pp. 550–553.
Klamczynska, B., & Mooney, W. (2017). Heterotrophic Microalgae: A Scalable and Sustainable Protein Source. In S. R. Nadathur, J. P. Wanasundara, & L. Scanlin, Sustainable Protein Sources (pp. 327-339). London, UK: Elsevier Inc.
Kollár, J., Pinseel, E., Vanormelingen, P., Poulíčková, A., Souffreau, C., Dvořák, P., et al. (2019). A polyphasic approach to the delimitation of diatom species: a case study for the genus Pinnularia (Bacillariophyta). J Phycol, 55, pp. 365–379.
Komárek, J., & Anagnostidis, K. (1989). Modern approach to the classification system of cyanophytes. 4–Nostocales. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 56, pp. 247–345.
Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., Chu, D.-T., & Show, P.-L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8, pp. 16-24.
Kraemer, K., Semba, R. D., Eggersdorfer, M., Schaumberg, D. A. (2012). Introduction: The Diverse and Essential Biological Functions of Vitamins. Ann Nutr Metab, 61, pp. 185–191.
Krienitz, L., & Bock, C. (2012). Present state of the systematics of planktonic coccoid green algae of inland waters. Hydrobiologia, 698(1), pp. 295-326.
Krienitz, L., Hegewald, E., Hepperle, D., Huss, V., Rohr, T., & Wolf, M. (2004). Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia, 43 (5), pp. 529–542.Krystallis, A., Maglaras, G., & Mamalis, S. (2008). Motivations and cognitive structures of consumers in their purchasing of functional foods 525e538. Food Quality and Preference, 19(6), pp. 525-538.
Kumudha, A., Selvakumar, S., Dilshad, P., Vaidyanathan, G., Thakur, M. S., & Sarada, R. (2015). Methylcobalamin – A form of vitamin B12 identified and characterised in Chlorella vulgaris. Food Chemistry, 170, pp. 316-320.
Kyong, H., Jang, M.-H., Joo, G.-J., & Takamura, N. (2001). Growth and Morphological Changes in Scenedesmus dimorphus Induced by Substances Released from Grazers, Daphnia magna and Moina macrocopa. Korean J. Limnol, 34(4), p. 285~291.
Lafarga, T., Acién-Fernández, F. G., Castellari, M., Villaró, S., Bobo, G., & Aguiló-Aguayo, I. (2019). Effect of microalgae incorporation on the physicochemical, nutritional, and sensorial properties of an innovative broccoli soup. LWT- Food Science and Technology, 111, pp. 167-174.
Lakshmana Senthil, S., Suja, C., Anantharaman, P., Kannan, K., & Kathiresan, S. (2019). First record of Coelastrella vacuolata (Chlorophyta: Scenedesmaceae) in Tuticorin coast, Gulf of Mannar. Indian Journal of Geo Marine Sciences, 48(12), pp. 1860-1863.
Larkin, M., Blackshields, G., Brown, N., Chenna, R., McGettigan, P. M., Valentin, F., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, pp. 2947-2948.
Lavoie, I., Lento, J., & Morin, A. (2010). Inadequacy of size distributions of stream benthic diatoms for environmental monitoring. J. N. Benthol. Soc., 29, pp. 586–601.
Leliaert, F., Verbruggen, H., Vanormelingen, P., Steen, F., López-Bautista, J. M., Zuccarello, G. C., et al. (2014). DNA-based species delimitation in algae. Eur J Phycol, 49(2), 179–196.
Levasseur, W., Perré, P., & Pozzobon, V. (2020). A review of high value-added molecules production by microalgae in light of the classification. Biotechnol. Adv., p. 107545.
Li, J., Davis, C. C., Donoghue, M. J., Kelley, S., & Tredici, P. D. (2001). Phylogenetic relationships of Torreya (Taxaceae) inferred from sequences of nuclear ribosomal DNA ITS region. Harvard Pap Bot, 6, 275-281.
Likert, R. (1932). A technique for the measurement of attitudes. Archives of psychology, 140(22), pp. 5-55.
Lim, D., & Schenk, P. (2017). Microalgae selection and improvement as oil crops: GM vs non-GM strain engineering. AIMS Bioeng, 40(1), pp. 151–161.
Ling, A., Yasir, S., Matanjun, P., & Abu Bakar, M. (2015). Effect of different drying techniques on the phytochemical content and antioxidant activity of Kappaphycus alvarezii. J Appl Phycol, 27, pp. 1717–1723.
Liu, K. (2017). Characterization of ash in algae and other materials by determination of wet acid indigestible ash and microscopic examination. Algal Research, 25, pp. 307-321.
Liu, X. y., & Hong, Y. (2021). Microalgae-Based Wastewater Treatment and Recovery with Biomass and Value-Added Products: A Brief Review. Current Pollution Reports, 7, pp. 227–245.
Lloyd, C., Tan, K. H., Lim, K. L., Valu, V. G., Fun, S. M., Chye, T. R., et al. (2021). Identification of microalgae cultured in Bold’s Basal medium from freshwater samples, from a high-rise city. Scientific Reports. 11, 4474. https://doi.org/10.1038/s41598-021-84112-0López-Bautista, J., Rindi, F., & Guiry, M. D. (2006). Molecular systematics of the subaerial green algal order Trentepohliales: An assessment based on morphological and molecular data. International Journal of Systematic and Evolutionary Microbiology, 56(7), pp. 1709–1715.
López-García, P., Rodríguez-Valera, F., P.-A. C., & Moreira, D. (2001). Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature, 409, pp. 603-607.
Lourenço, S., Moldão-Martins, M., & Alves, V. (2019). Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules, 24(22), p. 4132. doi:10.3390/molecules24224132
Lucakova, S., Branyikova, I., & Hayes, M. (2022). Microalgal Proteins and Bioactives for Food, Feed, and Other Applications. Appl. Sci., 12(4402), pp. 1-25.
Lücking, R. (2008). Taxonomy: a discipline on the brink of extinction- are DNA barcode scanners the future of biodiversity research? Arch. Sci., 61, pp. 75–88.
Luiten, E.E., I. Akkerman, A. Koulman, P. Kamermans, H. Reith, M.J. Barbosa, D. Sipkema and R.H. Wijffels. (2003). Realizing the promises of marine biotechnology. Biomol Eng. 20, pp. 429-439.
Machu, L. M., Ambrozova, J. V., Orsavova, J., Mlcek, J., Sochor, J., & Jurikova, T. (2015). Phenolic content and antioxidant capacity in algal food products. Molecules, 20(1), pp. 1118 –1133.
Malcata, F.X., Pinto, I.S., Guedes, A.C., Pinto, I.S., Guedes, A.C. (2019). Marine Macro- and Microalgae: An Overview. CRC Press. P.342.
Maltsev, Y., Krivova, Z., Maltseva, S., Maltseva, K., Gorshkova, E., Kulikovskiy, M. (2021). Lipid accumulation by Coelastrella multistriata (Scenedesmaceae, Sphaeropleales) during nitrogen and phosphorus starvation. Sci. Rep., 11, 19818.
Manoylov, K. M. (2014). Taxonomic identifications of algae (morphological and molecular), species concepts, methodologies, and their implications for ecological bioassessment. Journal of Phycology, 50(3), pp. 409-424.
Marino, T., Iovine, A., Casella, P., Martino, M., Chianese, S., Larocca, V., et al. (2020). From Haematococcus pluvialis microalgae a powerful antioxidant for cosmetic applications. Chem. Eng. Trans., 79, pp. 271-276.
Martínez–Hernández, G., Castillejo, N., Carrión–Monteagudo, M. d., Artés, F., & Artés-Hernández, F. (2018). Nutritional and bioactive compounds of commercialized algae powders used as food supplements. Food Science and Technology International, 24(2), pp. 172–182.
Maruyama, I., Nakao, T., Shigeno, I., Ando, Y., & Hirayama, K. (1997). Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus. Hydrobiologia, 358, pp. 133–138.
Matos, J., Cardoso, C., Bandarra, N., & Afonso, C. (2017). Microalgae as healthy ingredients for functional food: a review. Food & Function, 8(8), pp. 2672–2685.
Mehariya, S., Goswami, R., Karthikeysan, O., & Verma, P. (2021). Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere, 280 (130553), pp. 1-23.Meiklejohn, K., Damaso, N., Robertson, J. M. (2019). Assessment of BOLD and GenBank - Their accuracy and reliability for the identification of biological materials. PLoS One, 14, p. e0217084.
Meiselman, H., King, S., & Gillette, M. (2010). The demographics of neophobia in a large commercial US sample. Food Quality and Preference, 21, pp. 893-897.
Melkonian, M. (1990). Phylum Chlorophyta. Introduction to the Chlorophyta. In L. Margulis, J. O. Corliss, M. Melkonian, & D. J. Chapman, Handbook of Protoctista (pp. 597–599). Boston: Jones & Bartlett.
Menrad, K. (2003). Market and marketing of functional food in Europe. Journal of Food Engineering, 56(2-3), pp. 181–188.
Mills, S., Wilcox, C., Ibrahim, K., & Roberts, H. (2018). Can fortified foods and snacks increase the energy and protein intake of hospitalised older patients? A systematic review. Journal of Human Nutrition and Dietetics, 31, pp. 379–389.
Mishra, B. K., A. Rastogi and S. Shukla. (2012). Regulatory Role of Mineral Elements in the Metabolism of Medicinal Plants. Medicinal and Aromatic Plant Science and Biotechnology. 6(1), pp. 1 – 23.
Misurcova, L., S. Skrovankova, D. Samek, J. Ambrozova and L. Machu. (2012). Health benefits of algal polysaccharides in human nutrition. Advances in Food and Nutrition Research. 66: 75-145.
Mobin, S., & Alam, F. (2017). Some promising microalgal species for commercial applications: A review. Energy Procedia, 110, pp. 510 – 517.
Mohamed, A., Abo-El-Khair, B., & Shalaby, S. M. (2013). Quality of Novel Healthy Processed Cheese Analogue Enhanced with Marine Microalgae Chlorella vulgaris Biomass. World Applied Sciences Journal, 23(7), pp. 914-925.
Mohamed, A.G., B.E. Abo-El-Khair and S. M. Shalaby. (2013). Quality of Novel Healthy Processed Cheese Analogue Enhanced with Marine Microalgae Chlorella vulgaris Biomass. World Applied Sciences Journal. 23(7): 914-925.
Mokronsnop, V., & Zolotareva, E. (2014). Microalgae as tocopherol producers. Biotechnol. Acta, 7, pp. 26–33.
Molina-Grima, E., Belarbi, E.-H., Acién Fernández, F. G., Robles Medina, A., & Chisti, Y. (2003). Recovery of microalga biomass and metabolites: process options and economics. Biotechnology Advances, 20(7-8), pp. 491 – 515.
Moore, A. (2001). Blooming prospects? Humans have eaten seaweed for millennia; now microalgae are to be served up in a variety of novel health supplements, medicaments and preparations. EMBO Rep., 2, pp. 462–464.
Moorman, C., & Matulich, E. (1993). A model of consumers’ preventive health behaviors: The role of health motivation and health ability. Journal of Consumer Research, 20(2), pp. 208-228.
Mota, CSC, Pinto O, Sá T, Ferreira M, Delerue-Matos C, Cabrita ARJ, Almeida A, Abreu H, Silva J, Fonseca AJM, Valente LMP and Maia MRG. (2023). A commercial blend of macroalgae and microalgae promotes digestibility, growth performance, and muscle nutritional value of European seabass (Dicentrarchus labrax L.) juveniles. Frontiers in Nutrition. 10, 1165343.Mtaki, K., Kyewalyanga, M. S., & Mtolera, M. S. (2020). Assessment of Antioxidant Contents and Free Radical-Scavenging Capacity of Chlorella vulgaris Cultivated in Low Cost Media. Applied Sciences, 10(8611), pp. 1-11. doi:10.3390/app10238611
Muhammad, R., Abdullah, K. M., Mohd Zahari, M. S., & Md. Sharif, M. S. (2015). Revealing the Scenario of Food Neophobia among Higher Learning Institution Students from Klang Valley, Malaysia. Procedia - Social and Behavioral Sciences, 170, pp. 292-299.
Natrah, F., F. Yusoff, M. Shariff, F. Abas and N. Mariana. (2007). Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. J Appl Phycol, 19: 711-718.
Neenan, B., Feinberg, D., Hill, A., Mcintosh, R., & Terry, K. (1986). Fuels from microalgae: Technology status, potential, and research requirements. Solar Energy Research Institute. Solar Energy Research Institute Report.
Norhayati, M., Mohd Fairulnizal, M., Zaiton, A., Wan Syuriahti, W., Rusidah, S., Aswir, A., et al. (2015). Nutritional Composition of Selected Commercial Biscuits in Malaysia. Sains Malaysiana, 44(4), pp. 581–591.
Norton, TA., M. Melkoniam and RA. Anderson. (1996). Algal biodiversity. Phycologia. 35:308–326.
Nübel, U., Garcia-Pichel, F., & Muyzer, G. (1997). PCR Primers to Amplify 16S rRNA Genes from Cyanobacteria. Applied and Environmental Microbiology, 63(8), pp. 3327–3332.
Okkou, Hussaam; Ali Nizam, Adnan; Naddaf, Mohammad; Azmeh, Mohammad Fawaz. (2018). Influence of Fermentation Temperature and Sodium Nitrate Concentration on Growth Rate and Biomass Production of Local Chlorella Vulgaris Using Stirred Tank Photobioreactor. The Arab Journal for Arid Environments, 11(1-2), pp. 35-43.
Okumus, B., Dedeoğlu, B. B., & Shi, F. (2021). Gender and generation as antecedents of food neophobia and food neophilia. Tourism Management Perspectives, 37, p. 100773.
Oshodi, A. A., Ipinmoroti, K. O., & Adeyeye, E. I. (1997). Functional properties of some varieties of African yam bean (Sphenostylis stenocarpa) flour — III,. International Journal of Food Sciences and Nutrition, 48(4), pp. 243-250.
OWH. (2022). World Health Statistics 2022: monitoring health for the SDGs, sustainable development goals (Vols. Licence: CC BY-NC-SA 3.0 IGO). Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO.: World Health Organization.
Panahi, Y., Pishgoo, B., Jalalian, H. R., Mohammadi, E., Taghipour, H. R., Sahebkar, A., et al. (2012). Investigation of the effects of Chlorella vulgaris as an adjunctive therapy for dyslipidemia: Results of a randomised open-label clinical trial. Nutrition & Dietetics, 69, pp. 13-19.
Panahi, Y., R. Badeli, G. R. Karami, Z. Badeli and A. Sahebkar. (2015). A randomized controlled trial of 6-week Chlorella vulgaris supplementation in patients with major depressive disorder. Complement Ther Med. 23(4):598–602.
Pentinsaari, M., Ratnasingham, S., Miller, S., & Hebert, P. (2020). BOLD and GenBank revisited – Do identification errors arise in the lab or in the sequence libraries? PLoS One, 15(4), p. e0231814.Perkovi´c, L., Djedovi´c, E., Vujovi´c, T., Bakovi´c, M., Paradžik, T., & Cˇ ož-Rakovac, R. (2022). Biotechnological Enhancement of Probiotics through Co-Cultivation with Algae: Future or a Trend? Marine Drugs, 20, p. 142.
Pfandl, K., Chatzinotas, A., Dyal, P., & Boenigk, J. (2009). SSU rRNA gene variation resolves population heterogeneity and ecophysiological differentiation within a morphospecies (Stramenopiles, Chrysophyceae). Limnology and Oceanography, 54(1), pp. 171–181.
Piorreck, M., K. H. Baasch and P. Pohl. (1984). Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry. 23(2): 207 - 216.
Plank, D. W., Szpylka, J., Sapirstein, H., Woollard, D., Zapf, C. M., Lee, V., . . . Stringer, M. (2012). Determination of antioxidant activity in foods and beverages by reaction with 2, 2′-Diphenyl-1-picrylhydrazyl (DPPH): Collaborative study first action 2012.04. Journal of AOAC International, 95(6), pp. 1562-1569. doi:10.5740/jaoacint.CS2012_04
Pratt, R., & Johnson, E. (1967). Vitamin C and Choline Content of Chlorella vulgaris and C. pyrenoidosa. Journal of Pharmaceutical Sciences, 56(4), pp. 536-537.
Predieri, S., Sinesio, F., Monteleone, E., Spinelli, S., Cianciabella, M., Daniele, G. M., et al. (2020, June 15). Gender, Age, Geographical Area, Food Neophobia and Their Relationships with the Adherence to the Mediterranean Diet: New Insights from a Large Population Cross-Sectional Study. Nutrients, 12(6), p. 1778.
Prescott, G. W. (1931). Iowa Algae. Iowa City: University of Iowa.
Prescott, G. W. (1962). The Algae of the Western Great Lakes Area. Iowa: Wm. C. Brown Co., Dubuque.
Priyadarshani, I., & Rath, B. (2012). Commercial and industrial applications of micro algae – A review. Algal Biomass Utln., 3(4), pp. 89–100.
Pröschold, T., & Leliaert, F. (2007). Systematics of the green algae: conflict of classic and modern approaches. In J. Brodie & J. M. Lewis (Eds.), Unravelling the algae: the past, present, and future of algal systematics. Boca Raton, FL. USA. CRC Press. pp. 123–153.
Puhakka, R., Valve, R., & Sinkkonen, A. (2017). Older consumers’perceptions of functional foods and non-edible health-enhancing innovations. International Journal of Consumer Studies, 42(1), pp. 111–119.
Pulz, O. & W. Gross. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology. 65, pp. 635–648
Rabadán, A., & Bernabéu, R. (2021). A systematic review of studies using the Food Neophobia Scale: Conclusions from thirty years of studies. Food Quality and Preference, 93, p. 104241.
Raja, R. Hemaiswarya, S., Ravikumar, Ramanujam and Carvalho, Isabel (2019). Microalgae biomass production. In X. Malcata, I. S. Pinto, & A. C. Guedes. Marine Macro- and Microalgae: An Overview. Boca Raton, FL: CRC Press, Taylor & Francis Group. USA. pp. 63-77.
Raja, R., Coelho, A., Hemaiswarya, S., Kumarc, P., Carvalhoa, I. S., & Alagarsamy, A. (2018). Applications of microalgal paste and powder as food and feed: An update using text mining tool. Journal of Basic and Applied Sciences, 7, pp. 740–747.Ramos-Romero, S., Torrella, J., Pagès, T., Viscor, G., & Torres, J. (2021). Edible Microalgae and Their Bioactive Compounds in the Prevention and Treatment of Metabolic Alterations. Nutrients, 13(563), pp. 1-16.
Rani, K., Sandal, N., & Sahoo, P. (2018). A comprehensive review on chlorella-its composition, health benefits, market and regulatory scenario. Pharma Innov. J., 7, pp. 584–589.
Rasoul-Amini, S., Ghasemi, Y., Morowvat, M. H., & Mohagheghzadeh, A. (2009). PCR amplification of 18S rRNA, single cell protein production and fatty acid evaluation of some naturally isolated microalgae. Food Chemistry, 116(1), pp. 129-136.
Rawat, N., & Darappa, I. (2015). Effect of ingredients on rheological, nutritional and quality characteristics of fibre and protein enriched baked energy bars. J Food Sci Technol, 52(5), pp. 3006–3013.
Rizzolo, A., & Polesello, S. (1992). Chromatographic determination of vitamins in foods. Journal of Chromatography, 624, pp. 103-I 52.
Roberfroid, M. (2002). Global view on functional foods: European perspectives. British Journal of Nutrition, 88(2), pp. 133-138.
Rodríguez-Ezpeleta, N., Brinkmann, H., Burey, S. C., Roure, B., Burger, G., Löffelhardt, W. H., et al. (2005). Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Current Biology, 15(14), pp. 1325–1330.
Rodriguez-Garcia, I. and JL. Guil-Guerrero. (2008). Evaluation of the antioxidant activity of
three microalgal species for use as dietary supplements and in the preservation of foods. Food Chem. 108(3), pp.1023–1026.
Rodríguez-Salinas, E., Remacley, C., & Gonzalez-Halphen, D. (2012). Chapter Eight -Green Algae Genomics: A Mitochondrial Perspective. Advances in Botanical Research, 63, pp. 188-214.
Ruggiero, M., Gordon, D., Orrell, T., Bailly, N., B. T., Brusca, R., et al. (2015). A Higher Level Classification of All Living Organisms. (E. V. Thuesen, Ed.) PLoS One, 100(4), p. e0119248.
Sääksjärvi, M., Holmlund, M., & Tanskane, N. (2009). Consumer knowledge of functional foods. The International Review of Retail, Distribution and Consumer, 19(2), pp. 135-156.
Sansone, C., & Brunet, C. (2019). Promises and challenges of microalgal antioxidant production. Antioxidants, 8(7), pp. 1-9.
Savvidou, M., Georgiopoulou, I., Antoniou, N., Tzima, S., Kontou, M., Louli, V., . . . Kolisis, F. (2023). Extracts from Chlorella vulgaris Protect Mesenchymal Stromal Cells from Oxidative Stress Induced by Hydrogen Peroxide. Plants, 12, p. 361. doi:10.3390/plants12020361.
Safi, C., Charton, M., Pignolet, O., Silvestre, F., Vaca-Garcia, C., & Pontalier, P. (2013). Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. J. Appl. Phycol, 25, pp. 523–529.
Safi, C., Zebib, B., Merah, O., Pontalier, P.-Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: Areview. Renewable and Sustainable Energy Reviews, 35, pp. 265–278.Salvia, S., Mirzah, M., Yetti, M., & Endang, P. (2014). The Optimizing of Growth and Quality of Chlorella vulgaris as ASUH feed supplement for Broiler. International Journal on Advanced Science Engineering and Information Technology, 4(4), pp. 90-93.
Sambrook, J., Fritsch, E., & Maniatis, T. (1989). Molecular Cloning. A Laboratory Manual. New York, USA: Cold Spring: Harbor Laboratory Press.
Samek, D., Mišurcová, L., Machů, L., Buňka, F., & Fišera, M. (2013). Influencing of amino acid composition of green freshwater algae and cyanobacterium by methods of cultivation. Turkish Journal of Biochemistry, 38(4), pp. 360–368.
Santiago-Morales, I., Trujillo-Valle, L., Márquez-Rocha, F., & López Hernández, J. (2018). Tocopherols, Phycocyanin and Superoxide Dismutase from Microalgae as Potential Food Antioxidants. Appl. Food Biotechnol, 5, pp. 19–27.
Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd Allah, E. (2017). Microalgae metabolites: a rich source for food and medicine. Saudi J. Biol. Sci., 26(4), pp. 709-722.
Scaglioni, P. T., Quadros, L., de Paula, M., Furlong, V. B., Abreu, P. C., Badiale-Furlong, E. (2018,) Inhibition of Enzymatic and Oxidative Processes by Phenolic Extracts from Spirulina sp. and Nannochloropsis sp. Food Technology & Biotechnology, 56(3), pp. 344-353. doi:10.17113/ftb.56.03.18.5495.
Schneider, S. C., Lawniczak, A. E., Picińska-Faltynowicz, J., & Szoszkiewicz, K. (2011). Do macrophytes, diatoms and non-diatom benthic algae give redundant information? Results from a case study in Poland. Limnologica, 42, pp. 204–11.
Sergi, G., Bano, G., Pizzato, S., Veronese, N., & Manzato, E. (2017). Taste loss in the elderly: possible implications for dietary habits. Critical Reviews in Food Science and Nutrition, 57, pp. 3684–3689.
Seyfabadi, J., Ramezanpour, Z., & Amini Khoeyi, Z. (2011). Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. J Appl Phycol, 23, pp. 721–726.
Seyidoglu, N., Inan, S., & Aydin, C. (2017). A prominent superfood: Spirulina platensis. In N. Shiomi, & V. Waisundara (Eds.), Superfood and Functional Food - The Development of Superfoods and Their Roles as Medicine (pp. 1-27). London: Intech Open.
Shay, E.G. (1993). Diesel fuel from vegetable oils: status and opportunities. Biomass Bioenerg. 4, pp. 227-242.
Sheehan, J., Dunahay, T., Benemann, J., & Roessler, P. (1998). A look back at the U.S. Department of Energy‘s Aquatic Species Program. the U.S. Department of Energy‘s Aquatic Species Program. National Renewable Energy Laboratory.
Sikiru, A., Arangasamy, A., Alemede, I., Guvvala, P., Egena, S., Ippala, J., & Bhatta, R. (2019). Chlorella vulgaris supplementation effects on performances, oxidative stress and antioxidant genes expression in liver and ovaries of New Zealand White rabbits. Heliyon, 5(9), p. e02470 . doi:10.1016/j.heliyon.2019.e02470.
Singh, D., Khattar, J., Rajput, A., Chaudhary, R., & Singh, R. (2019). High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions. (M.-J. Virolle, Ed.) PLoS ONE, 14(9), p. e0221930.
Slapeta, J., Moreira, D., & Lopez-Garcia, P. (2005). The extent of protest diversity: insights from molecular ecology of freshwater eukaryotes. Proc.Biol. Sci., 272(1576), pp. 2073–2081.Sluys, R. (2013). The unappreciated, fundamentally analytical nature of taxonomy and the implications for the inventory of biodiversity. Biodivers. Conserv, 22, pp. 1095–105.
Smerilli, A., Balzano, S., Maselli, M., Blasio, M., Orefice, I., Galasso, C., et al. (2019). Antioxidant and photoprotection networking in the coastal diatom skeletonema marinoi. Antioxidants, 8(6), p. 154.
Smerilli, A., Orefice, I., Corato, F., Olea, A. G., Ruban, A., & Brunet, C. (2017). Photoprotective and antioxidant responses to light spectrum and intensity variations in the coastal diatom skeletonema marinoi. Environ. Microbiol., 19(2), pp. 611–627.
Sogin, M., Morrison, H., Huber, J., Mark Welch, D., Huse, S., & Neal, P. (2006). Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proceedings of the National Academy of Sciences, 103(32), pp. 12115-12120.
Soltani, N. L., Alnajar, N., Dezfulian, M., Shokarvi, S., Heydari, M., Choopani, A. (2016). Biochemical and Physiological Characterization of Tree Microalgae spp. as Candidates for Food Supplement. Journal of Applied Biotechnology Reports, 3(1), pp. 377-381.
Soucier, V. D., Doma, K. M., Farrell, E. L., Leith-Bailey, E. R., & Duncan, A. M. (2019). An examination of food neophobia in older adults. Food Quality & Preference, 72, pp. 143–146.
Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. J Biosci Bioeng., 101, pp. 87–96.
Stancheva, R., Hall, J. D., McCourt, R. M., & Sheath, R. J. (2013). Identity and phylogenetic placement of Spirogyra species (Zygnematophyceae, Charophyta) from California streams and elsewhere. J. Phycol., 49, pp. 588–607.
Stevenson, J. R. (2006). Refining diatom indicators for valued ecological attributes and development of water quality criteria. In N. Ognjanova-Rumenova, & K. Manoylov, Advances in Phycological Studies (pp. 365–83). Moscow: Pensoft Publishers.
Stevenson, R. J., Pan, Y., Manoylov, K. M., Parker, C. A., Larsen, D. P., & Herlihy, A. T. (2008). Development of diatom indicators of ecological conditions for streams of the western US. J. N. Benthol. Soc., 27, pp. 1000–16.
Stratton, L., Vella, M., Sheeshka, J., & Duncan, A. (2015). Food neophobia is related to factors associated with functional food consumption in older adults. Food Qual. Prefer., 41, pp. 133–140.
Strejckova, A., Dvorak, M., Klejdus, B., Krystofova, O., Hedbavny, J., Adam, V., et al. (2019). The strong reaction of simple phenolic acids during oxidative stress caused by nickel, cadmium and copper in the microalga Scenedesmus quadricauda. New biotechnology, 48, pp. 66-75.
Syed, S., Arasu, A., & Ponnuswamy, I. (2015). The Uses of Chlorella Vulgaris as Antimicrobial Agent and as a Diet: The Presence of Bio-active Compounds which caters the Vitamins, Minerals in General. International Journal of BioScience and BioTechnology, 7(1), pp. 185-190.
Szabo, N., Matulks, R., & Chan, T. (2013). Safety evaluation of Whole Algalin Protein (WAP) from Chlorella protothecoides. Food and Chemical Toxicology, 59, pp. 35–45.
Szeto, Y., Tomlinson, B., & Benzie, I. (2002). Total antioxidant and ascorbic acid content of fresh fruits and vegetables: implications for dietary planning and food preservation. British Journal of Nutrition, 87(1), pp. 55-59.Takenaka, S., Sugiyama, S., Ebara, S., Miyamoto, E., Abe, K., Tamura, Y., et al. (2001). Feeding dried purple laver (nori) to vitamin B12-deficient rats significantly improves vitamin B12 status. British Journal of Nutrition, 85(6), pp. 699-703.
Thrane, M., Paulsen, P., Orcutt, M., & Krieger, T. (2017). Soy Protein: Impacts, Production, and Applications. In S. R. Nadathur, J. P. Wanasundara, & L. Scanlin, Sustainable Protein Sources (pp. 20-45). London, UK: Elsevier Inc.
Tian, H., & Chen, J. (2021). Food neophobia and intervention of university students in China. Food Science & Nutrition, 00, pp. 1-8.
Tilden, J. (1910). Minnesota Algae – Volume 1. Minneapolis: Authority of the Board of Regents of the University for the People of Minnesota.
Tomaselli, L. (2004). The Microalgal cell. In. A. Richmond, Handbook of microalgal culture: biotechnology and applied phycology, (pp. 3-19). Ames, Iowa, USA: Blackwell Publishing Company.
Trainor, F., Cain, J., & Shubert, L. (1976). Morphology and nutrition of the colonial green alga, Scenedesmus: 80 years later. Bot. Rev., 42, pp. 5-25.
Urala, N. (2005). Functional foods in Finland. Consumers: Views, attitudes and willingness to use. Academic Dissertation. VTT Publication. pp. 581.
Urala, N., & Lähteenmäki, L. (2003). Reasons behind consumers' functional food choices. Nutrition & Food Science, 33(4), pp. 148-158.
Uribe-Wandurraga, Z. N., Igual, M., García-Segovia, P., & Martínez-Monzó, J. (2020). Influence of microalgae addition in formulation on colour, texture, and extrusion parameters of corn snacks. Food Science and Technology International, 26(8), pp. 685-695.
Uribe-Wandurraga, Z. N., Igual, M., Reino-Moyón, J., García-Segovia, P., & Martínez-Monzó, J. (2021). Effect of microalgae (Arthrospira platensis and Chlorella vulgaris) addition on 3D printed cookies. Food Biophysics, 16(1), pp. 27-39.
Vaibhav, V., & Sahasrabuddhe, A. (2018). ‘BLUE’ is the new ‘GREEN’ for Cosmetic Industry. International Journal for Research Trends and Innovation, 3(10), pp. 134-144.
Van Kleef, E., van Trijp, H. C., & Luning, P. (2005). Functional foods: Health claim food product compatibility and the impact of health claim framing on consumer evaluation. Appetite, 44(3), pp. 299-308.
Van wychen, S., & Laurens, L. M. (2015). Determination of Total Solids and Ash in Algal Biomass. NREL/TP-5100-60956. Golden, CO: National Renewable Energy Laboratory.
Vecchio, R., Van Loo, E. J., & Annunziata, A. (2016). Consumers' willingness to pay for conventional, organic and functional yogurt: Evidence from experimental auctions. International Journal of Consumer Studies, 40(3), pp. 368-378.
Wang, A. Y., Yan, K., Chu, D., Nazer, M., Lin, N.T., Samaranayake, E., Chang, J. (2020). Microalgae as a Mainstream Food Ingredient: Demand and Supply Perspective. In M. Alam, J.-L. Xu, & Z. Wang (Eds.), Microalgae Biotechnology for Food, Health and High Value Products (pp. 29–79). Singapore: Springer.
Wang, G., L. Shen and C. Sheng. (2012). Characterization of biomass ashes from power plants firing agricultural residues. Energy and Fuels. 26(1): 102-111.Wang, Q., Song, H., Liu, X., Liu, B., Hu., Z., & Liu, G. (2019). Morphology and molecular phylogeny of coccoid green algae Coelastrella sensu lato (Scenedesmaceae, Sphaeropeales), including the description of three new species and two new varieties. J. Phycol., 55, 1290-1305.
Wang, Y. K., Stevenson, R. J., & Metzmeier, L. (2005). Development and evaluation of a diatom-based index of Biotic Integrity for the Interior Plateau Ecoregion, USA. J. N. Am. Benthol. Soc., 24, pp. 990–1008.
Wansink, B., Westgren, R. E., & Cheney, M. M. (2005). Hierarchy of nutritional knowledge that relates to the consumption of a functional food. Nutrition, 21(2), pp. 264–268.
Watanabe, F., & Bito, T. (2018). Vitamin B12 sources and microbial interaction. Exp. Biol. Med., 243, pp. 148–158.
Watanabe, F., Takenaka, S., Kittaka-Katsura, H., Ebara, S., & Miyamoto, E. (2002). Characterization and bioavailability of vitamin B12-compounds from edible algae. J. Nutr. Sci. Vitaminol., 48, pp. 325–331.
Watanabe, F., Yabuta, Y., Bito, T., & Teng, F. (2014). Vitamin B12-Containing Plant Food Sources for Vegetarians. Nutrients, 6, pp. 1861–1873.
Watts, B., Ylimaki, G. Jeffery, L., & Elias, L. (1989). Basic Sensory Methods for Food Evaluation. Ottawa, Ontario, Canada: International Development Research Centre.
Wells, M., Potin, P., Craigie, J., Raven, J., Merchant, S., Helliwell, K., et al. (2017). Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol., 29, pp. 949–82.
Whitcroft, K., Cuevas, M., Haehner, A., & Hummel, T. (2017). Patterns of olfactory impairment reflect underlying disease etiology. The Laryngoscope, 127, pp. 291–295.
WHO. (2022). The Global Health Observatory-Noncommunicable diseases. Retrieved 2019, from Organization World Health: https://www.who.int/data/gho/data/themes/noncommunicable-diseases
Will, K. W., & Rubinoff, D. (2004). Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics, 20, pp. 47–55.
Wolkers, H., Barbosa, M., Kleinegris, D., Bosma, R., Wijffels, R., & Harmsen, P. (2011). Microalgae: the green gold of the future? Large-Scale Sustainable Cultivation of Microalgae for the Production of Bulk Commodities. Wageningen: Propress.
Woortman, D., Fuchs, T., Striegel, L., Fuchs, M., Weber, N., Brück, T., et al. (2020). Microalgae a superior source of folates: Quantification of folates in halophile microalgae by stable isotope dilution assay. Frontiers in bioengineering and biotechnology, 7, p. 481.
Wright, T., & Lackey, R. (2008). Definitions of feed manufacturing and livestock nutrition terms. Ontario Ministry of Agriculture, Food, and Rural Affairs, Factsheet order no. 08–039 AGDEX 400/50.
Wu, J., Liu, C., & Lu, Y. (2017). Preparative separation of phytosterol analogues from green alga Chlorella vulgaris using recycling counter-current chromatography. J. Separ. Sci., 40, pp. 2326–2334.
Wu, K., C. TSAI, C. CHEN and H. CHEN. (2012). The characteristics of torrefied microalgae. Applied Energy. 100(C): 52 – 57.Yamaguchi, K. (1997). Recent advances in microalgal bioscience in Japan with special reference to utilization of biomass and metabolites: a review. Journal of Applied Phycology. 8, pp. 487-502.
Yan J, Shamim T, Chou SK, Desideri U, & H., L. (2017). Clean, efficient and affordable energy for a sustainable future. Applied Energy, 185(2), pp. 953–962.
Yang, E. C., Noh, J. H., Kim, S., & Choi, D. H. (2020). Plastid-encoded gene comparison reveals usefulness of atpB, psaA, and rbcL for identification and phylogeny of plastid-containing cryptophyte clades. Phycologia, 59(2), pp. 154-164.
Yang, N., Zhang, Q., Chen, J., Wu, S., Chen, R., Yao, L., . . . Zhang, Z. (2023). Study on bioactive compounds of microalgae as antioxidants in a bibliometric analysis and visualization perspective. Front. Plant Sci., 14, p. 1144326. doi:10.3389/fpls.2023.
Yusof, Y.A., J.H. Basari1, N.A. Mukti1, R. Sabuddin, A. Razak, S. Sulaiman, S. Makpol1 and W. Ngah. (2011). Fatty acids composition of microalgae Chlorella vulgaris can be modulated by varying carbon dioxide concentration in outdoor culture. Afr. J. Biotechnol. 10: 13536-13542
Zhao, J.-b., Gao, Z.-b., Li, Y.-x., Wang, Y.-l., Zhang, X.-y., & Zou, L.-q. (2020). The food neophobia scale (FNS): Exploration and confirmation of factor structure in a healthy Chinese sample. Food Quality and Preference, 79(103791), pp. 1-5.
Zimmermann, J., Jahn, R., & Gemeinholzer, B. (2011). Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Organisms Div. Evol., 11, pp. 173–92.
Zydenbos, S., & Humphrey-Taylor, V. (2003). Biscuits, cookies, and crackers: Nature of the Products. Encycl. Food Sci. Nutr., pp. 524–528.