AGRIS - International System for Agricultural Science and Technology

Studying the adaptive ability of some introduced genotypes of Pearl Millet (Pennisetum glaucum L) in response to some agricultural practices and their characterization using molecular markers

2023

Kinana Yassin Hassoun


Bibliographic information
Publisher
Damascus University . Faculty of agricultural engineering
Other Subjects
Issr; مورثات dreb; Dehydrin genes; Dreb; تركيز بروتينات كلية منحلة; مورثات الديهيدرين; التسميد الآزوتي; قرائن; Nitrogen fertilization; الدخن; Total soluble proteins concentration
Language
Arabic
Note
References Abdulhakeem, A., Falusi, O., Adebola, M., and Yusuf, D. (2019). Genetic diversity studies for morphological traits in pearl millet (Pennisetum glaucum L.) landraces of Northern Nigeria. GSC Biological and Pharmaceutical Sciences, 7, 060-070. doi: 10.30574/gscbps.2019.7.2.0070 Acevedo. E. and E. Fereres. (1993). Resistance to abiotic stresses. In ; Plant Breeding, ed. MD Haward, NO Bosemark, I Romagosa, London; Chapman and Hall Pp. 406-421. Agarwal, P. K., Agarwal, P., Reddy, M. K., and Sopory, S. K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant CellRep.25, 1263–1274. doi: 10.1007/s00299-006-0204-8 Agarwal, P. K., Agarwal, P., Reddy, M., and Sopory, S. K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant cell reports, 25, 1263-1274. Ahluwalia, O., Singh, P. C., and Bhatia, R. (2021). A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resources, Environment and Sustainability, 5, 100032. doi: https://doi.org/10.1016/j.resenv.2021.100032 Ajeigbe, H. A., Akinseye, F. M., Kamara, A. Y., Tukur, A., and Inuwa, A. H. (2020). Productivity, water- and nitrogen-use efficiency, and profitability of Pearl Millet (Pennisetum glaucum) under different nitrogen applications in semiarid region of Nigeria. International Journal of Agronomy, 2020, 1802460. doi: 10.1155/2020/1802460 AL-Atawneh, N., Shehadeh, A., Amri, A., and and Maxted, N. (2009). Conservation field guide to medics of the Mediterranean Basin. ICARDIA. Ali, E. A. (2010). Grain yield and nitrogen use efficiency of Pearl Millet as affected by plant density, nitrogen rate and splitting in sandy soil. J. Agric. and Environ. Sci, 7, 327-335. Andrews, D. J., and Kumar, K. A. (1992). Pearl Millet for Food, Feed, and Forage. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 48, pp. 89-139): Academic Press. Animasaun, D., Morakinyo, J., Mustapha, O., and Krishnamurthy, R. (2015). Assessment of genetic diversity in accessions of pearl millet (Pennisetum glaucum) and napier grass (Pennisetum purpureum) using microsatellite (ISSR) markers. Iranian Journal of Genetics and Plant Breeding, 4. Animasaun, D., Morakinyo, J., Mustapha, O., and Krishnamurthy, R. (2019). Genome size and ploidy variations in Pearl Millet (Pennisetum glaucum) and Napier Grass (Pennisetum purpureum) genotypes. Acta Agronómica, 68, 299-305. doi: 10.15446/acag.v68n4.75939 Annamalai, R., Namasivayam, A., Pillai, A., and Dharmaraj, L. (2020). Assessment of variability and character association in Pearl Millet [Pennisetum glaucum (L.) R.Br.]. International Journal of Current Microbiology and Applied Sciences, 9, 3247-3259. doi: 10.20546/ijcmas.2020.906.388 Arshewar, S., Karanjikar, P., Dambale, A., and Kawde, M. (2018). Effect of nitrogen and zinc levels on growth, yield and economics of Pearl Millet (Pennisetum glaucum L.). International Journal of Current Microbiology and Applied Sciences(3), 2246-2253. Arya, G., Manivannan, V., Marimuthu, S., and N, S. (2022). Effect of foliar application of nano-urea on yield attributes and yield of Pearl Millet (Pennisetum glaucum L.).International Journal of Plant and Soil Science, 502-507. doi: 10.9734/ijpss/2022/v34i2131293 Ausiku, A. P., Annandale, J. G., Steyn, J. M., and Sanewe, A. J. (2020). Improving Pearl Millet (Pennisetum glaucum) Productivity through Adaptive Management of Water and Nitrogen. Water, 12(2). doi:10.3390/w12020422 Ayad, W., Hodgkin, T., Jaradat, A., and Rao, V. R. (1997). Molecular genetic techniques for plant genetic resources. Report of an IPGRI Workshop, 9-11 October 1995, Rome, Italy. Ayub, M., Nadeem, M., Tanveer, A., Tahir, M., and Khan, R. (2007). Interactive effect of different nitrogen levels and seeding rates on fodder yield and quality of pearl millet. Pakistan Journal of Agricultural Sciences, 44. Bashir, E. M. A., Ali, A. M., Ali, A. M., Melchinger, A. E., Parzies, H. K., and Haussmann, B. I. G. (2013). Characterization of Sudanese pearl millet germplasm for agro-morphological traits and grain nutritional values. Plant Genetic Resources, 12(1), 35-47. doi: 10.1017/S1479262113000233 Bhat, M. A., Mir, R. A., Kumar, V., Shah, A. A., Zargar, S. M., Rahman, S., and Jan, A. T. (2021). Mechanistic insights of CRISPR/Cas-mediated genome editing towards enhancing abiotic stress tolerance in plants. Physiol Plant, 172(2), 1255-1268. doi: https://doi.org/10.1111/ppl.13359 Bhuva, H., Detroja, A., and Khanpara, M. (2018). Requirement of nutrients for pearl millet (Pennisetum glaucum L.) production under Saurashtra conditions. International Journal of Environmental Sciences and Natural Resources, 9(4), 128-131. Bornet, B., and Branchard, M. (2001). Nonanchored Inter Simple Sequence Repeat (ISSR) markers: Reproducible and specific tools for genome fingerprinting. Plant Molecular Biology Reporter, 19(3), 209-215. doi: 10.1007/BF02772892 Bornet, B., Goraguer, F., Joly, G., and Branchard, M. (2002). Genetic diversity in European and Argentinian cultivated potatoes (Solanum tuberosum subsp. tuberosum) detected by inter-simple sequence repeats (ISSRs). Genome, 45(3), 481-484. doi: 10.1139/g02-002 Borovskii GB, Stupnikova IV, Antipina AI, Vladimirova SV, Voinikov VK., (2002). Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol. 11; 2(1): 5. Botstein, D., White, R., Skolnick, M. H., and Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics, 32 3, 314-331. Boyer, J. S. (1982). Plant Productivity and Environment. Science, 218(4571), 443-448. doi: 10.1126/science.218.4571.443 Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248-254. doi: https://doi.org/10.1016/0003-2697(76)90527-3 Brandeland, M. (2006). Geneflow: A Publication about Agricultural Biodiversity: Bioversity International. Brunken, J., de Wet, J. M. J., and Harlan, J. R. (1977). The morphology and domestication of pearl millet. Economic Botany, 31(2), 163-174. doi: 10.1007/BF02866587 Cai, B., and Ge, J. (2004). The effect of nitrogen amount on photosynthetic rate of sugar beet. Nature and Science, 2(2), 60-63.Cedric, M., Jehin, L., Saïdou, A.-A., Thuillet, a.-c., Couderc, M., Sire, P., . . . Vigouroux, Y. (2010). Genetic basis of pearl millet adaptation along an environmental gradient investigated by a combination of genome scan and association mapping. Molecular Ecology, 20, 80-91. doi: 10.1111/j.1365-294X.2010.04893.x Chakraborty, A., Viswanath, A., Malipatil, R., Semalaiyappan, J., Shah, P., Ronanki, S., . . . Thirunavukkarasu, N. (2022). Identification of candidate genes regulating drought tolerance in Pearl Millet. International Journal of Molecular Sciences, 23(13). doi:10.3390/ijms23136907 Chandana, P., Madhavi, A., M.A, A., and Krishna, A. (2018). Influence of nutrient management practices on growth and yield of Pearl Millet in Melia dubia based agri-silvi system. International Journal of Current Microbiology and Applied Sciences, 7, 4734-4745. doi: 10.20546/ijcmas.2018.708.498 Chen, Y., Id, Orcid., Li, C., Zhang, B., Yi, J., Yang, Y., Kong, C., Lei, C., Gong, M (2019). The role of the late embryogenesis-abundant (lea) protein family in development. Genes, 10(2), 2073-4425. doi: doi: 10.3390/genes10020148. Choi. D. W., B. Zhu. and T. J. Close. (1999). The Barly dehydrine multigene family : sequences, allels types, chromosomesassignment, and expression characteristics of 11 Dhn gene of cv. Dicktoo Theor. Appl. Genet 98: 1234-1247. Choi. D.W, M.C. Koag, and T.J. Close.(2000). Map location of Dhn gene determined by gene – specific PCR. Theor. Appl Genet. 101; 350-354. Choudhary, S. K., Shekhawat, S., Harish, Barupal, M., Kumar, M., and Shekhawat, N. S. (2021). Genetic diversity among different landraces of Pearl millet [Cenchrus americanus (L.) Morrone syn. Pennisetum glaucum (L.) R. Br.]. Vegetos, 34, 919 - 927. Chowdari, K., Davierwala, A., Gupta, V., Ranjekar, P., and Govila, O. (1998). Genotype identification and assessment of genetic relationships in Pearl Millet [Pennisetum glaucum (L.) R. Br] using microsatellites and RAPDs. Theoretical and Applied Genetics, 97, 154-162. Chowdhury, M. A., Vandenberg, B., and Warkentin, T. (2002). Cultivar identification and genetic relationship among selected breeding lines and cultivars in chickpea (Cicer arietinum L.). Euphytica, 127(3), 317-325. doi: 10.1023/A:1020366819075 Ciampitti, I. A., and Vyn, T. J. (2011). A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crops Research, 121(1), 2-18. doi: https://doi.org/10.1016/j.fcr.2010.10.009 Close. T.J, A.A. korll, and P.M. chandler. (1989). A cDNA - based comparison of dehydration – induced proteins (dehydrins) in barely and corn. Plant Mol Biol . ; 13 (1) : 95 – 108. Close. T.J, N.C. Meyer, and J. Rdik. (1995). Nucleotide sequence of a gene encoding a585 kilodalton barley dehydrin that lacks of serine tract. Plant physiol. ; 107 (1): 289- 290. Close. T.J. (1997). Dehydrins: A commonatity in respons of plants to dehydration and low temperatures physiol. plant 100. 291 – 296. Coca. M, C. Almoguera, and J. Jordano. (1994). Expression of sun flower low- molecular – weight heat shock proteins during embryogensis and persistence after germination : localization and possible functional implication. Plant Mol . Biol. 25: 479-492. Cui, J., Xia, X., Zhao, Y., Liu, M., Xiao, N., Guo, S., . . . Li, S. (2022). Interpreting varietyandndash;locationandndash;fertilizer interactions to enhance Foxtail Millet productivity in northern China. Agronomy, 12(9). doi:10.3390/agronomy12092216Danyluk. J, A. Perron , M. Houde, A. Limin, B. fowler, N. Benhamou, and f. Sarhan. (1998). Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat.Planet cell; 10: 623 – 638 De Kalbermatten, G. (2007). Désertification et ressources naturelles, environnement et sécurité alimentaire. agriculture and développement rural, 4. Deshmukh, V., Patil, H., Deshmukh, J., and Madrap, I. (2010). Pearl millet characterization by using ISSR marker. Asian Journal of Bio Science, 5(1), 138-139. Devienne-Barret, F., Justes, E., Machet, J. M., and Mary, B. (2000). Integrated control of nitrate uptake by crop growth rate and soil nitrate availability under field conditions. Annals of Botany, 86(5), 995-1005. doi: https://doi.org/10.1006/anbo.2000.1264 Divya, K., Kavi Kishor, P. B., Bhatnagar-Mathur, P., Singam, P., Sharma, K. K., Vadez, V., and Reddy, P. S. (2019). Isolation and functional characterization of three abiotic stress-inducible (APX, Dhn and HSC70) promoters from Pearl Millet (Pennisetum glaucum L.). Molecular Biology Reports, 46(6), 6039-6052. doi: 10.1007/s11033-019-05039-4 Divya, K., Palakolanu, S. R., Kavi Kishor, P., Rajesh, A. S., Vadez, V., Sharma, K. K., and Mathur, P. B. (2021). Functional characterization of late embryogenesis abundant genes and promoters in Pearl Millet (Pennisetum Glaucum L.) For abiotic stress tolerance. Physiol Plant, 173(4), 1616-1628. doi: https://doi.org/10.1111/ppl.13544 Dudhate, A., Shinde, H., Yu, P., Tsugama, D., Gupta, S., Liu, S., and Takano, T. (2021). Comprehensive analysis of nac transcription factor family uncovers drought and salinity stress response in Pearl Millet (Pennisetum Glaucum). BMC Genomics, 22. doi: 10.1186/s12864-021-07382-y Dure. L., M. Crouch., J. Harado., D. Ho T-H, and J. Mundy. (1989). Common amino acid sequence domains the LEA proteins of higher plants. Plant Mol. Biol. 12: 475-486. Dure. L.. (1993). Structural motifs in LEA proteins.Pp 91-103. Dvo, Z., kov, k., Hlsn, P., epkov, e., Janovská, D., Viehmannová, I., . . . Milella, L. (2015). Comparative analysis of genetic diversity of 8 millet genera revealed by ISSR markers. Emirates Journal of Food and Agriculture, 27, 1. doi: 10.9755/ejfa.2015.04.077 Espartero. J, J.A. Pintor – Toro, and J.M. Pardo. (1994). Differential accumulation of S – adenosyl methionine synthetase transcripts in response to salt stress. plant Mol. Biol. 25: 217 – 227. FAO. Food and Agriculture Organization of the United Nations. (2021). FAOSTAT Statistical Database, Statistical Division. Rome 2021. FAO. Food and Agriculture Organization of the United Nations. (2023). The Second Report on the State of the World’s Plant Genetic Resources. https://www.fao.org/agriculture/crops/thematic-sitemap/theme/seeds-pgr/sow/sow2/en/. 2023. Fayed, M., Salem, M., and El-Kader, O. (2016). Pearl Millet (Pennisetum glaucum L.) As affected by some agricultural treatments. Journal of Plant Production, 7, 393-400. doi: 10.21608/jpp.2016.45375 Fernandez, M., Figueiras, A., and Benito, C. (2002). The use of issr and rapd markers for detecting dna polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theoretical and Applied Genetics, 104, 845-851alau. G.A., H. Y-C. Wang., and D.W. Hughes. (1993). Cotton LEA 5 and LEA 14 encode a typical late embryogenesis – abundant proteins. Plant Physiol. 101: 695-696. Galiba. G, A. Quarris., J. Sutka., A. Morgounov., and J. W. snap. (1995). RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of Wheat. Theor apple Genet, 90: 1174-1179. Gauchan, D., and Smale, M. (2003). Choosing the ‘right’tools to assess the economic costs and benefits of growing landraces: an example from bara district, central terai, nepal. Plant Genetic Resources Newsletter, 134, 18-25. Gautam, S., Singh, D., Kumar, V., Ramand, S., and Babu, A. (2020). Effect of nitrogen and phosphorus levels on growth, yield and nutrient uptake of Pearl Millet (Pennisetum Glaucum L). Inter Arch Appl Sci Technol, 11, 101-105. Gawai, D., Moharil, M., Jadhav, P., and Gahukar, S. (2017). Differential gene expression in Foxtail Millet (Setaria Italica) under water stress. International Journal of Research in Applied, 5(1), 99-104. Grašič, M., Golob, A., Vogel-Mikuš, K., & Gaberščik, A. ( 19). Severe Water Deficiency during the Mid-Vegetative and Reproductive Phase has Little Effect on Proso Millet Performance. Water, 11(10). doi:10.3390/w11102155 Guerrero. F. D, J. T. Jones, and J. E. Mullet. (1990). Turgor- responsive gene transcription and RNA levels increase rapidlly when pea shoots are wilted : sequence and expression of three inducible gene. Plant Mol. Biol. 51: 11-26. Harlan, J. R., J. M. J. D. Wet and A. B. L. Stemler (1976), Origins of African Plant Domestication (pp. 409-452). JAN M. J. DE WET and ANN B. L. STEMLER, Berlin, New York: De Gruyter Mouton. Hay, R. K. M. (1995). Harvest index: a review of its use in plant breeding and crop physiology. Annals of Applied Biology, 126(1), 197-216. doi: https://doi.org/10.1111/j.1744-7348.1995.tb05015.x Herzer S, Kinealy K, Asbury R, Beckett P, Eriksson K, Moore P., (2003). Purification of native dehydrin from Glycine Max cv., Pisum sativum, and Rosmarinum officinalis by affinity chromatography. Protein Expr Purif.; 28(2):232-240. Hitchcock, A. (1951). Manual of the grasses of the us. USDA Misc. Pub, 200. Hu, H., and Xiong, L. (2014). Genetic engineering and breeding of drought-resistant crops. Annual Review of Plant Biology, 65(1), 715-741. doi: https://doi.org/10.1146/annurev-arplant-050213-040000 IBPGR, I. (1993). Descriptors for Sorghum [Sorghum Bicolor (L.) Moench]. International Board for Plant Genetic Resources, Rome, Italy, 432. Ibrahim, A., Abaidoo, R., Fatondji, D., and Opoku, A. (2015). Determinants of fertilizer microdosing-induced yield increment of pearl millet on an acid sandy soil. Experimental Agriculture, -1, 1-17. doi: 10.1017/S0014479715000241 Ingram. J. and D. Bartels. (1996). The molecular Basis of Dehydration Tolerance in plants. Annu. Rev. plant physiol. Plant Mol. Biol. 47:377-403. Isah, S., Gbanguba, A., Abdullah, Y., Bubuche, T., and Mohammed, T. (2020). Effects of Variety and Nitrogen Levels on the Performance of Pearl Millet: Pennisetum Glaucum (L.) R. BR. Journal of Human, Earth, and Future, 1, 188-196. doi: 10.28991/HEF-2020-01-04-04 Jade, S. S., Takawale, P. S., and Bahulikar, R. A. (2021). The utility of ISSRs for the identification of interspecific hybrids between pearl millet (Pennisetum glaucum [LR.Br.) × napier grass (Pennisetum purpureum Schumach). Plant Genetic Resources, 19(2), 104-111. doi: 10.1017/S1479262121000149 Jadhav, R. P., Khafi, H. R., and Raj, A. D. (2011). Effect of Nitrogen and Vermicompost on Protein Content and Nutrients Uptake in Pearl Millet [Pennisetum Glaucum (L.) R. Br. Emend Stuntz]. Agricultural science digest, 31, 319-321. Jangra, S., Rani, A., Yadav, D., Yadav, RC., Yadav, NR. (2021). Promising versions of a commercial pearl millet hybrid for terminal drought. Journal of Genetics, 100(88). doi: https://doi.org/10.1007/s12041-021-01337-8 Joshi, M. P., Pankhaniya, R., and Mohammadi, N. K. (2018). Response of pearl millet (Pennisetum glaucum L.) to levels and scheduling of nitrogen under south Gujarat condition. International Journal of Chemical Studies, 6(1), 32-35. Joshi, S., Gupta, V. S., Aggarwal, R. K., Ranjekar, P., and Brar, D. (2000). Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theoretical and Applied Genetics, 100, 1311-1320. Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., and Sharma, A. (2020). The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production. Applied Sciences, 10(16). doi:10.3390/app10165692 Karp, A. (1997). Molecular tools in plant genetic resources conservation: a guide to the technologies: Bioversity International. Khadadiya, M., Patel, A., Desai, L., Patel, U., and Desai, N. (2020). Effect of integrated nutrient management on content, uptake and quality of summer pearlmillet (Pennisetum glaucum L.) under south Gujarat condition. International Journal of Chemical Studies, 8(4), 2239-2244. Koag MC, Fenton RD, Wilkens S, Close TJ., (2003). The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol.; 131(1):309-316. Krishna, S., Laljibhai, L., Vipulkumar, & Patil, H. (2021). Genetic diversity in finger millet [Eleusine coracana (L.) Gaertn] Using ISSR markers. The Pharma Innovation Journal. 10, 31-39. Kumar, P., Kumar, R., Singh, S., and Kumar, A. (2014a). Effect of fertility on growth, yield and yield attributes of pearl millet (Pennisetum glaucum L.) under rainfed condition. Agriways, 2(2), 89-93. Kumar, R., Harish, S., Dalal, V., Malik, L., Chugh, P., Garg, K., and Raj. (2014b). Studies on variability, correlation and path analysis in Pearl Millet [Pennisetum Glaucum (L.) r. Br.] genotypes. Forage research, 40(3), 163-167. Kumar, S., Hash, J. C., Basava, R. k., and Srivastava, R. (2020). Identification of polymorphic SSR markers in elite genotypes of pearl millet and diversity analysis. Ecological Genetics and Genomics, Ecological Genetics and Genomics. (accepted). doi: 10.1016/j.egg.2019.100051 Kumari, S., Kumar, B., Anand, R., and and Prasad, S. M. (2018). Evaluating the Effect of nitrogen on Crop growth, yield and Quality of Finger Millets (Eleusine coracana) Under Upland Rainfed Ecosystem of Jharkhand. International Journal of Current Microbiology and Applied Sciences, 7(7), 2394-2397. doi: https://doi.org/10.20546/ijcmas.2018.707.279 Lane, A., and Jarvis, A. (2007). Changes in climate will modify the geography of crop suitability: agricultural biodiversity can help with adaptation. Journal of SAT Agricultural Research, 4.Larid, J. (2007). Crop diversity: a secret weapon, Gene flow, Publication about Agricultural Biodiversity. Bioversity International, 31-32. Lata, C., and Prasad, M. (2011). Role of DREBs in regulation of abiotic stress responses in plants. Journal of Experimental Botany, 62(14), 4731-4748. doi: 10.1093/jxb/err210 Lawyer, F. C., Stoffel, S., Saiki, R. K., Chang, S.-Y., Landre, P. A., Abramson, R. D., and Gelfand, D. H. (1993). High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5'to 3'exonuclease activity. Genome research, 2(4), 275-287. Lee, D., Hanna, W., Buntin, G., Dozier, W., Timper, P., and Wilson, J. (2009). Pearl millet for grain. Bulletin 1216. https://extension.uga.edu/publications/detail.html?number=B1216andtitle=pearl-millet-for-grain Lemgharbi, M., Badreddine, B., Souilah, R., Ladjel, T., Djabali, D., and Boubekeur, N. (2016). Biodiversity of Pearl Millet [ Pennisetum glaucum (L.) R. Br.] in Southern Algeria (Hoggar Region). American Journal of Plant Sciences, 07, 1673-1684. doi: 10.4236/ajps.2016.712158 Li, W., Zhi, H., Wang, Y.-f., Li, H.-q., & Diao, X.-m. (2012). Assessment of Genetic Relationship of Foxtail Millet with Its Wild Ancestor and Close Relatives by ISSR Markers. Journal of Integrative Agriculture, 11(4), 556-566. doi: https://doi.org/10.1016/S2095-3119(12)60042-2 Lisse T, Bartels D, Kalbitzer HR, Jaenicke R., (1996). The recombinant dehydrin-like desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three-dimensional structure in its native state. Biol Chem. 377(9): 555-561. Lobell, D. B., and Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant physiology, 160(4), 1686-1697. Londo, J. P., Chiang, Y.-C., Hung, K.-H., Chiang, T.-Y., and Schaal, B. A. (2006). Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proceedings of the National Academy of Sciences, 103(25), 9578-9583. doi: 10.1073/pnas.0603152103 Lopez CG, Banowetz G, Peterson CJ, Kronstad WE., (2001).Differential accumulation of a 24-kd dehydrin protein in wheat seedlings correlates with drought stress tolerance at grainfilling. Hereditas.; 135(2-3): 175-181. Maharana, S., Singh, D. S., and Scholar, M. (2021). Effect of Iron and Zinc on growth and yield of Pearl millet. Pharma Innovation, 10(10), 546-550. Mahesh, B., Vaja. (2010). Evaluation for genetic purity and diversity of Pearl Millet hybrids (Pennisetum glaucum (L.) Br. R.) through biochemical and molecular markers. (M.Sc M.Sc), Junagadh Agricultural University, jau,junagadh. Retrieved from http://krishikosh.egranth.ac.in/handle/1/5810018401 Malakar, P., Gupta, M., Gupta, V., Thakur, N., Mali, N., and Kanwadiya, A. (2022). Effect of cultivars and fertility levels on yield and economics of pearl millet under rainfed condition of Jammu region. The Pharma Innovation J, 11(4), 1054-1059. Maniatis, T., and Fritsch, E. J SAMBROOK 1982 Molecular Cloning A Laboratory Manual Cold Spring Harbor Laboratory. New York. Marchais, L., and Tostain, S. (1997). Analysis of reproductive isolation between pearl millet (Pennisetum glaucum (L.) R. Br.) and P. ramosum, P. schweinfurthii, Psquamulatum, Cenchrus ciliaris. Euphytica, 93(1), 97-105. McCubbin W. D., Kay C. M., (1985). Hydrodynamic and optical properties of the wheat Em protein. Can. J. Biochem. 63: 803-810. Mengel, and Kirkby, E. A.. (2004). Principles of plant nutrition. Annals of Botany, 93(4), 479-480. doi: 10.1093/aob/mch063 Merlot S., and Giraudat J., (1997). Genetic analysis of abscisic acid signal transduction. Plant Physiol. 114: 751-757. Meyers, R. L., and Meinke, L. J. (1994). Buckwheat: a multi-purpose, short-season alternative (1994). Momma M, Kaneko S, Haraguchi K, Matsukura U., (2003).Peptide mapping and assessment of cryoprotective activity of 26/27-kDa dehydrin from soybean seeds. Biosci Biotechnol Biochem.; 67(8): 1832-1835. Muchow, R. C., and Davis, R. (1988). Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment II. Radiation interception and biomass accumulation. Field Crops Research, 18(1), 17-30. doi: https://doi.org/10.1016/0378-4290(88)90056-1 Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H. (1992). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Biotechnology Series, 17-17. Nagaoka, T., and Ogihara, Y. (1997). Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theoretical and Applied Genetics, 94, 597-602. Nei, M. (1987). Molecular Evolutionary Genetics. Chapter 9: Genetic Distance Between Populations (pp. 208-253): Columbia University Press. Newton, C. R., and Graham, A. (1997). PCR (2nd ed ed.). Oxford, OX, UK : New York: BIOS Scientific Publishers Nonami. H, and J. S. Boyer. (1990). Wall extensibility and cell hydraulic conductivity decrease in enlarging stem tissues at low water potentials. Plant physiol. 93:1610-1619. Obeng, E., Cebert, E., Singh, B., Ward, R., Nyochembeng, L., and Mays, D. (2012). Growth and grain yield of pearl millet (Pennisetum glaucum) genotypes at different levels of nitrogen fertilization in the southeastern United States. Journal of Agricultural Science, 4, 155-163. doi: 10.5539/jas.v4n12p155 Oumar, I., Mariac, C., Pham, J.-L., and Vigouroux, Y. (2008). Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Theoretical and Applied Genetics, 117(4), 489-497. doi: 10.1007/s00122-008-0793-4 Padhiyar, S., Supreeth, H., Solanki, R., Mungra, K., and Tomar, R. S. (2023). Assessment of molecular diversity among Pearl Millet [Pennisetum Glaucum (l.) R. Br.] Maintainer (b) and restorer lines. Annals of Arid Zone, 62, 55-63. doi: 10.59512/aaz.2023.62.1.6 Pages M., Vilardell J., Jensen A.B., Alba M. M., Torrent M., Goday A., (1993). Molecular biological responses to drought in maize. In Global Enviromental Change, NATO Adv. Sci. Inst. Ser., Vol. I 16, Interacting Stresses on Plants in a Changing Climate, ed. M. B. Jackson, C. R. Blake, Pp. 583-591. Palta, J. A., and Fillery, I. R. P. (1995). N application increases pre-anthesis contribution of dry matter to grain yield in wheat grown on a duplex soil. Australian JournalAgricultural Research, 46(3), 507-518. Pandey, R., Maranville, J., and Bako, Y. (2001). Nitrogen fertilizer response and use efficiency for three cereal crops in Niger. Communications in Soil Science and Plant Analysis - COMMUN SOIL SCI PLANT ANAL, 32, 1465-1482. doi: 10.1081/CSS-100104206 Parcy F., Valon C., Raynal M., Giraudat J., (1994). Regulation of gene expression programs during Arabidopsis seed development roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6: 1567-1582. Parmar, A., Tripathi, M., Tiwari, S., Tripathi, N., Parihar, P., and Pandya, R. (2023). Characterization Of Pearl Millet [Pennisetum Glaucum (L.) R Br.] Genotypes Against Downey Mildew Disease Employing Disease In- dexing and ISSR Markers. Octa Journal of Biosciences, 10(2), 134-142. Paterson, A. H., Tanksley, S. D., and Sorrells, M. E. (1991). DNA markers in plant improvement. Advances in agronomy, 46, 39-90. Ponnaiah, G., Gupta, S., Blϋmmel, M., Maheswaran, M., Sumathi, P., Atkari, D., . . . Duraisami, V. (2018). Genotypic variation in forage linked morphological and biochemical traits in hybrid parents of Pearl Millet. Animal Nutrition and Feed Technology, 18, 163-175. doi: 10.5958/0974-181X.2018.00016.1 Portères, R. (1976). Origins of African Plant Domestication.African Cereals: Eleusine, Fonio, Black Fonio, Tejf, Brachiaria, paspalum, Pennisetum, and African Rice. In J. R. Harlan, J. M. J. D. Wet and A. B. L. Stemler (Eds.), Origins of African Plant Domestication (pp. 409-452). JAN M. J. DE WET and ANN B. L. STEMLER, Berlin, New York: De Gruyter Mouton. Powell, J. B., and Burton, G. W. (1968). Polyembryony in Pearl Millet, Pennisetum typhoides1. Crop Science, 8(6), cropsci1968.0011183X000800060041x. doi: https://doi.org/10.2135/cropsci1968.0011183X000800060041x Powell, W., Thomas, W. T. B., Baird, E., Lawrence, P., Booth, A., Harrower, B., . . . Waugh, R. (1997). Analysis of quantitative traits in barley by the use of Amplified Fragment Length Polymorphisms. Heredity, 79(1), 48-59. doi: 10.1038/hdy.1997.122 Prasad, S., Singh, M., and Singh, R. (2014). Effect of nitrogen and zinc fertilizer on pearl millet (Pennisetum glaucum) under agri-horti system of eastern Uttar Pradesh. The Bioscan, 9(1), 163-166. Pujarula, V., Pusuluri, M., Bollam, S., Das, R. R., Ratnala, R., Adapala, G., . . . Gupta, R. (2021). Genetic Variation for Nitrogen Use Efficiency Traits in Global Diversity Panel and Parents of Mapping Populations in Pearl Millet. Frontiers in Plant Science, 12. Rafalski, J. A., Vogel, J. M., Morgante, M., Powell, W., Andre, C., and Tingey, S. V. (1996). Generating and Using DNA Markers in Plants. In B. Birren and E. Lai (Eds.), Nonmammalian genomic analysis (pp. 75-134). San Diego: Academic Press. Rajendra Prasad, M. (2022). Expression of a Pennisetum glaucum gene DREB2A confers enhanced heat, drought and salinity tolerance in transgenic Arabidopsis. Molecular Biology Reports, v. 49(no. 8), pp. 7347-7358-2022 v.7349 no.7348. doi: 10.1007/s11033-022-07527-6 Rakesh, K., Umesha, C., and Balachandra, Y. (2021). Influence of Nitrogen and Zinc Levels on Pearl Millet (Pennisetum glaucum L.). Biological Forum – An International Journal, 13(1), 128-130. Raymond, R. (2001). Gen flow Junior targets youth for a better tomorrow. IPGRI, AnnualReport, Rome , Italy., 22. Reddy, S. B. P., Madhuri, K. N., Venkaiah, K., and Prathima, T. (2016). Effect of Nitrogen and Potassium on Yield and Quality. International journal of Agriculture Research, Innovation and Technology, 4, 2319-1473. Roberts. J. K, N. A. Desimon, W. L. Lingle, and L. Dure. (1993). Cellular concentrations and uniformity of cell- type accumulation of tow LEA proteins in cotton embryos. Plant cell 5: 769-780. Robertson. M. (2003). Increased dehydrin promoter activity caused by Hv SPY is independent of the ABA response pathway. Plant J. 34(1): 39-46 Rogers, S. O., and Bendich, A. J. (1989). Extraction of DNA from plant tissues. In S. B. Gelvin, R. A. Schilperoort and D. P. S. Verma (Eds.), Plant Molecular Biology Manual (pp. 73-83). Dordrecht: Springer Netherlands. Rostamza, M., Chaichi, M., Jahansooz, M., Mashhadi, H., and Sharifi, H.-R. (2011). Effects of Water Stress and Nitrogen Fertilizer on Multi-Cut Forage Pearl Millet Yield, Nitrogen, and Water Use Efficiency. Communications in Soil Science and Plant Analysis, 42, 2427-2440. doi: 10.1080/00103624.2011.609252 Saghai – Maroof. M.A, R.B. Biyashev., G.P. Yang, Q. Zhang, and R.W. Allard. (1994). Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 91: 5466 -5470. Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and and Arnheim, N. (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230(4732), 1350-1354. doi: https://doi.org/10.1126/science.2999980 Sankar, S. M., Satyavathi, C. T., Singh, M., Bharadwaj, C., Singh, S. P., and Barthakur, S. (2013). Genetic Variability and Association Studies in Pearl Millet for Grain Yield and High Temperature Stress Tolerance. Indian Journal of Dryland Agricultural Research and Development, 28, 71-76. Senthilvel, S., Jayashree B Fau - Mahalakshmi, V., Mahalakshmi V Fau - Kumar, P. S., Kumar Ps Fau - Nakka, S., Nakka S Fau - Nepolean, T., Nepolean T Fau - Hash, C., and Hash, C. (2008). Development and mapping of simple sequence repeat markers for pearl millet from data mining of expressed sequence tags. BMC plant biology, 8(1471-2229 (Electronic)), 119. doi: https://doi.org/10.1186/1471-2229-8-119 Serwer, P. (1983). Agarose gels: Properties and use for electrophoresis. Electrophoresis, 4(6), 375-382. Shahin, M., Abdrabou, R. T., Abdelmoemn, W., and Hamada, M. M. (2013). Response of growth and forage yield of pearl millet (Pennisetum galucum) to nitrogen fertilization rates and cutting height. Annals of Agricultural Sciences, 58(2), 153-162. Shepherd, K. D., Cooper, P. J. M., Allan, A. Y., Drennan, D. S. H., and Keatinge, J. D. H. (2009). Growth, water use and yield of barley in Mediterranean-type environments. The Journal of Agricultural Science, 108(2), 365-378. doi: 10.1017/S0021859600079399 Shinozaki K., Yamaguchi-Shinozaki K., (1996). Molecular responses to drought and cold stress. Curr. Opin. Biotechnology. 7:161-167. Shinozaki K., Yamaguchi-Shinozaki K., (1997). Gene expression and signal transduction in water-stress response. Plant physiol. 115:327-334. Shinozaki. K, and K. Yamaguchi – Shinozaki. (1997). Molecular cold stress. Curr. Opin.Biotechnol . 7: 161-167. Shivhare, R., and Lata, C. (2017). Exploration of Genetic and Genomic Resources for Abiotic and Biotic Stress Tolerance in Pearl Millet. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.02069 Shixu Li, Zhao.Q, Zhu.D, and Jingjuan Yu. (2018). A DREB-Like Transcription Factor From Maize (Zea mays), ZmDREB4.1, Plays a Negative Role in Plant Growth and Development. PMCID: PMC5893645 doi: 10.3389/fpls.2018.00395 Singh, J., Reddy, P. S., Reddy, C. S., and Reddy, M. K. (2015). Molecular cloning and characterization of salt inducible dehydrin gene from the C4 plant Pennisetum glaucum. Plant Gene, 4, 55-63. doi: https://doi.org/10.1016/j.plgene.2015.08.002 Singh, M., and Nara, U. (2023). Genetic insights in pearl millet breeding in the genomic era: challenges and prospects. Plant Biotechnology Reports. doi: 10.1007/s11816-022-00767-9 Singh, S., Yadav, Y., Yadav, H. P., and Yadav, N. (2014). Studies on genetic variability and trait association for grain yield and its components in Pearl Millet [Pennisetum Glaucum (L.) R. Br.]. Forage research, 40, 91-94. Singh, V.P. and Arora, A. (2001). Intraspecific variation in nitrogen uptake and nitrogen utilization efficiency in wheat (Triticum aestivum L.). Crop Sci. 186: 239-244. Smil, V. (2000). Nitrogen in Agriculture. In V. Smil (Ed.), Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production (pp. 0): The MIT Press. Sneath, P. H., and Sokal, R. R. (1973). Numerical taxonomy. The principles and practice of numerical classification. Springer. Srivastava, J., and Damania, A. (1989). Use of collections in cereal improvement in semi-arid areas. The use of plant genetic resources., 88-104. Srivastava, R., Kushwah, R. B. S., Lakshmi, V., Bollam, S., Pusuluri, M., Tara, T., . . . Gupta, R. (2019). Genome-wide association studies (GWAS) and genomic selection (GS) in pearl millet: advances and prospects. Frontiers in Genetics. doi: 10.3389/fgene.2019.01389 Stich, B., Haussmann, B. I., Pasam, R., Bhosale, S., Hash, C. T., Melchinger, A. E., and Parzies, H. K. (2010). Patterns of molecular and phenotypic diversity in Pearl Millet [Pennisetum Glaucum (l.) R. Br.] From west and central africa and their relation to geographical and environmental parameters. BMC plant biology, 10(1), 1-10. Sunil, C., Rawson, A., and Anandharamakrishnan, C. (2022). Millets: an overview. Handbook of Millets-Processing, Quality, and Nutrition Status, 1-21. Suresh, G., Guru, G., and Lokanadhan, S. (2020). Effect of plant growth regulators and nutrient levels on yield attributes and yield of Pearl Millet. Journal of Pharmacognosy and Phytochemistry, 9(6), 306-311. Talasila, V., Rajesh Singh, Kishore, C. R., and and Singh, A. C. (2019). Effect of planting density and nitrogen levels on growth and yield of Fodder Pearl millet (Pennisetum Glaucum L.). International Journal of Current Microbiology and Applied Sciences, 8(7), 312-318. doi: https://doi.org/10.20546/ijcmas.2019.807.038 Tautz, D., and Renz, M. (1984). Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic acids research, 12(10), 4127-4138. Taylor, J. R. N. (2016). Millet Pearl: overview. In C. Wrigley, H. Corke, K. Seetharaman and J. Faubion (Eds.), Encyclopedia of Food Grains (Second Edition) (pp. 190-198). OxfordAcademic Press. Teulat. B, N. Zoumarou - Wallis, B. Rotter, M. Ben Salem, H. Bahri, and D. This. (2003). QTL for relative water content in field- grown barley and their stability across Mediterranean environments. Theor Apple Genet. 108 (1): 181 – 188. Togas, R., Yadav, L. R., Choudhary, S. L., and Shisuvinahalli, G. V. (2017). Effect of integrated use of fertilizer and manures on growth, yield and quality of Pearl Millet. International Journal of Current Microbiology and Applied Sciences, 6, 2510-2516. doi: 10.20546/ijcmas.2017.608.297 Varshney, R., Shi, C., Thudi, M., Cedric, M., Wallace, J., Qi, P., . . . Xu, X. (2017). Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 35. doi: 10.1038/nbt.3943 Velten J and Oliver MJ., (2001). Tr288, a rehydrin with a dehydrin twist. Plant Mol Biol.; 45(6):713-722. Venkatesan, J., Ramu, V., Sethuraman, T., Sivagnanam, C., & Doss, G. (2021). Molecular marker for characterization of traditional and hybrid derivatives of Eleusine coracana (L.) using ISSR marker. Journal of Genetic Engineering and Biotechnology, 19(1), 178. doi: 10.1186/s43141-021-00277-1 Wang, P., Wang, H., Wang, Y., Ren, F., and Liu, W. (2018). Analysis of BHLH genes from Foxtail Millet (Setaria Italica) and their potential relevance to drought stress. PLOS ONE, 13(11), e0207344. doi: 10.1371/journal.pone.0207344 Weising, K., and Gardner, R. C. (1999). A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome, 42(1), 9-19. doi: 10.1139/g98-104 Whitsitt MS, Collins RG, Mullet JE., (1997). Modulation of Dehydration Tolerance in Soybean Seedlings (Dehydrin Mat1 Is Induced by Dehydration but Not by Abscisic Acid. Plant Physiol. 114(3):917-925. Winslow, M., and Thomas, R. (2007). Desertification in the middle east and north africa: warning signs for a global future. Agriculture and Rural Development, 14(1), 10-12. Yadav, M., Jadav, N., Kumar, D., Raval, C., and Chaudhari, D. (2021a). Effect of different nutrient management practices on growth, yield attributes and yield of transplanted Pearl Millet (Pennisetum Glaucum L.). International Journal of Plant and Soil Science, 33, 260-266. doi: 10.9734/IJPSS/2021/v33i2230704 Yadav, O. P., Gupta, S. K., Govindaraj, M., Sharma, R., Varshney, R. K., Srivastava, R. K., . . . Mahala, R. S. (2021b). Genetic Gains in Pearl Millet in India: Insights Into Historic Breeding Strategies and Future Perspective. Frontiers in Plant Science, 12. doi: 10.3389/fpls.2021.645038 Yadav, O., Upadhyaya, H., Reddy, K., Jukanti, A., Pandey, S., and Tyagi, R. (2017). Genetic resources of pearl millet: status and utilization. Indian Journal of Plant Genetic Resources, 30(1), 31-47. http://doi.org/10.5958/0976-1926.2017.00004.3 Yang, R., Chen, M., Sun, J.-C., Yu, Y., Min, D.-H., Chen, J., . . . Zhang, X.-H. (2019). Genome-Wide Analysis of LIM Family Genes in Foxtail Millet (Setaria italica L.) and Characterization of the Role of SiWLIM2b in Drought Tolerance. International Journal of Molecular Sciences, 20(6). http://doi.org/10.3390/ijms20061303 Yang, S., Wang, L., Akhtar, K., Ahmad, I., and Khan, A. (2022). Optimizing nitrogen fertilization and variety for millet grain yield and biomass accumulation in dry regions. Agronomy, 9, 1-13. doi: 10.3390/agronomy12092116Yu, Z., Wang, X., and Zhang, L. (2018). Structural and functional dynamics of dehydrins: a plant protector protein under abiotic stress. International Journal of Molecular Sciences, 19(11), 3420. Zhong, C. Y., Cheng, A. C., Wang, M. S., Zhu, D. K., Luo, Q. H., De Zhong, C., . . . Duan, Z. (2009). Antibiotic susceptibility of riemerella anatipestifer field isolates. Avian diseases, 53(4), 601-607. Zietkiewicz, E., Rafalski, J., and Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (ssr)-anchored polymerase chain reaction amplification. Genomics, 20, 176-183. doi: 10.1006/geno.1994.1151
Type
Thesis

2024-09-10
EndNote
Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at [email protected]