References
1. Abd El-Hakim AF, Mady E, Abou Tahoun AM, Ghaly MSA, Eissa MA. (2022). Seed quality and protein classification of some quinoa varieties. Journal of Ecological Engineering. ;23(1):24–33. Available: https://doi.org/10.12911/2299899 3/143866.
2. Abdulrahman M. Almadini, Ayman E. Badran and Abdullah M. Algosaibi., (2019). Evaluation of Efficiency and Response of Quinoa Plant to Nitrogen Fertilization levels. Middle East Journal of Applied Sciences EISSN: 2706 -7947 ISSN: 2077- 4613 DOI: 10.36632/mejas/2019.9.4.1. Volume: 09. Pages: 839-849.
3. Aboudrare A. Agronomie D. Principes et Pratiques. (2009). Rapport de Formation Continue. FAO. 2009;49.
4. Adediran, J.A.; Taiwo, L.B.; AKande, M. O.; Sobulo, R.A. andIdowo, O.J (2004). Application of organic and inorganic fertilizers for sustainable maize and cowpea yield in Nigeria. Journal of plant Nutrition. 7 (7):1163-11815. Adolf, V.I., Jacobsen, S.-E., and Shabala, S. (2013). Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ. Exp. Bot. 92, 43-54.
6. Ahemad, M. and Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University-Science, 26, 1-20.
7. Ahmadi SH, Solgi S, Sepaskhah AR. (2019). Quinoa: A super or pseudo-super crop? Evidences from evapotranspiration, root growth, crop coefficients, and water productivity in a hot and semi-arid area under three planting densities. Agric. Water Manag. ;225(20):105784. Available: https://doi.org/10.1016/j.agwat.2 019.105784.
8. Ahmed M. M. A., Mohamed. M. A., Maisa. L. A. E., and Mariam. S. A. M., 2021. Effect of Organic and Inorganic Fertilizer with Reduced Nitrogen Level on Growth, Nitrogen use Efficiency, Seed Yield and Quality Traits of Chenopodium quinoa. Plant Cell Biotechnology and Molecular Biology 22(71&72):438-453.
9. Ahmadzai, H. (2020). Trends in Quinoa adoption in marginal areas an assessment of economic viability and policy outlook. International Center for Biosaline Agriculture (ICBA). 3(57) 235–247. Available at: https://orcid.org/0000-0001-9766-7052.
10. Ahmed. M. M., Mohamed, M. A., Maisa, L. A. and Mariam, S. A. (2021). Effects of Organic and Inorganic Fertilizer With Reduced Nitrogen Level on Growth, Nitrogen Use Efficiency, Seed Yield and Quality Traits of Chenopodium quinoa. Plant Cell Biotechnology and Molecular Biology 22(71&72):438-453.
11. Ahmed. M. M.N, Mohamed, M. A., Maisa, L. A. and Mariam, S. A. and Mariam, S. A-M., (2022). Differential Reponse of Chinopodium Quinoa Genotypes to Organic and Chemical Fertilizer Combined With Different N application rate. Plant Cell Biotechnology and Molecular Biology 23(1&2):54-81; ISSN: 0972-2025.
12. Alam M.N., Jahan M.S., Ali M.K., Islam M.S., Khandaker S.M.A.T. (2007). Effect of vermicompost and NPKS fertilizers on growth, yield and yieldcomponents of red amaranth. Australian Journal of Basic and Applied Science 1 (4): 706-716.
13. Alandia G, Rodriguez JP, Jacobsen SE, Bazile D, Condori B. (2020). Global Expansion of Quinoa and Challenges for the Andean Region. Glob. Food Secur.;26:100429. [CrossRef].
14. Alvarez-Flores, R.; Winkel, T.; Degueldre, D.; Del Castillo, C.; Jo_re, R. (2014). Plant growth dynamics and root morphology of little-known species of Chenopodium. from contrasted Andean habitats. Botany, 92, 101–108.
15. Amiryousefi., M, Tadayon. M. R., Ebeahim. R., (2020). Effect of Chemical and Biological Fertilizers on Some Physiological Traits, Yield Components and Yield of Quinoa Plant. Isfahan University of Technology – Jornal of Crop Production and Processing; 10 (2); 1-17. URL; http;//jdpp.iut.ac.ir/article-1-2932-en.html.
16. Amlinger F, Peyr S, Geszti J, Dreher P, Karlheinz W, Nortcliff S. (2007). Beneficial effects of compost application on fertility and productivity of soils. Literature Study, Federal Ministry for Agriculture and Forestry, Envi. and Water Management, Austria; 2007 [Online].
17. Arancon N.Q, Edwards C.A., Bierman P. (2006). Influences of vermicomposts on field strawberries: Part 2. Effects on soil microbial and chemical
properties. Bioresource Technology 97: 831-840.
18. Arguello J.A., Ledesma A., Nunez S.B., Rodriguez C.H., Goldfarb M.D.C.D. (2006). Vermicompost effects on bulbing dynamics, non-structural carbohydrate content, yield and quality of ‘Rosado Paraguayo’ garlic bulb. HortScience 41 (3): 589592.
19. Atiet-Allah Dalila et Saidani Nour-Elhouda. (2019). Effets du stress salin sur la germination de quelques variétés introduites du quinoa (Chenopoduim quinoa Wills.) et évaluation de certains indicateurs biochimiques de stress. Master biochimie appliquée. Sciences biologiques. Université Mohamed Khider de Biskra.Sciences exactes et Sciences de la nature et de vie. Biskra.:p: 5_4120. Aydin A, Kant C, Turan M (2012). Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr J Agr Res 7:1073–1086. DOI: 10.5897/AJAR10.274
21. Aboukila E (2019). Use of spent grains, cheese whey, gypsum, and compost for reclamation of sodic soils and improvement of corn seed germination. Alex Sci Exch J 40:312-326. doi.org/10.21608/asejaiqjsae.34188.
22. Azarmi R., Giglou M.T. Taleshmikail R.D. (2008). Influence of vermicompost on soil chemical and physical properties in tomato field. African Journal of Biotechnology. 7 (14): 2397-2401.
23. Basra, S.M.A., S. Iqbal and I. Afzal. )2014(. Evaluating the response of nitrogen application on growth, development and yield of quinoa genotypes. International Journal of Agriculture & Biology, 16(5):886-892.
24. Bhat, N.A.; Riar, A.; Ramesh, A.; Iqbal, S.; Sharma, M.P.; Sharma, S.K.; Bhullar, G.S. (2017). Soil Biological Activity Contributing to Phosphorus Availability in Vertisols under Long-Term Organic and Conventional Agricultural Management. Front. Plant Sci., 8, 1523
25. Bhatt MK, Labanya RH, Joshi C (2019). Infuence of long-term chemical fertilizers and organic manures on soil fertility - a review. Universal J Agric Rese 7:177–188. https://doi.org/10.13189/ujar. 2019.070502.
26. Bazile, D., and Baudron, F. (2015). “The dynamics of the global expansion of quinoa growing in view of its high biodiversity,”. in State-of-the-Art Report on Quinoa Around the World in 2013, eds. D. Bazile, D. Bertero and C. Nieto (Rome: FAO/CIRADE), 44–55.
27. Bharagava, A., Shukla, S.and Ohri,D. (2006). chenopoduim quinoa: an Indian perspective. Industrial Crops and Products 23, 73-87.
28. Bilalis D, Kakabouki I, Karkanis A, Travlos I, Triantafyllidis V, Hela D. (2012). Seed and saponin production of organic quinoa (Chenopodium quinoa Willd.) for different tillage and fertilization. Not Bot Horti Agrobo.;40:42-46.
29. Bilalis DJ, Roussis I, Fuentes F, Kakabouki I, Travlos I (2017). Organic agriculture and innovative crops under Mediterranean conditions. NotulaeBotanicae Horti Agrobotanici Cluj-Napoca 45:323–331. https://doi.org/10.15835/nbha45210867.
30. Berova M, Karanatsidis G, Sapundzhieva K, Nikolova V. (2010). Effect of organic fertilization on growth and yield of pepper plants (Capsicum annuum L.). Folia Horticulturae Ann.; 22:3-7.
31. Biochar for Sustainable Soils, (2018). Biochar Guides Developed through Biochar for Sustainable Soils Project. Funded by Global Environment Facility (GEF) and UN Environment. Available from; https;//biochar.international/guides/.
32. Bhatt MK, Labanya RH, Joshi C (2019). Infuence of long-term chemical fertilizers and organic manures on soil fertility - a review. Universal J Agric Rese 7:177–188. https://doi.org/10.13189/ujar. 2019.070502.
33. Cicatelli, A., Lingua, G., Todeschini, V., Biondi, S., Torrigiani, P. and Castiglione, S. (2010). Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Annals of Botany, 106, 791-802.
34. Claros, M., Angulo, V., Gutiérrez, C. and Oruño, N. (2010). Primeros reportes de aislamientos de bacterias y hongos endófitos en el cultivo de la quinua (Chenopodium quinoa Willd.) en Bolivia. [First reports of bacterial isolates and fungal endophytes in the cultivation of quinoa in Bolivia. In Third World Quinoa Congress, Oruro.
35. Costa, S.M., Manifesto, M.M., Bramardi, S.J. et al. (2012). Genetic structure in cultivated quinoa (Chinopodium quinoa Willd.), a reflection of landscape structure in Northwest Argentina. Conserv Genet 13, 1027-1038. https;//doi.org/10.1007/s10592-012-0350-1.
36. Chitravadivu, C.; BalaKrishnan, V.; Manikandan, J.; Elavazhagan, T. and Jayakumar, S. (2009): Application of food waste compost on soil microbial population in groundnut cultivated soil, India. MiddleEast J. Sci. Res., 4(2): 90-93.37. Choukr-Allah, R., Rao, N. K., Hirich, A., Shahid, M., Alshankiti, A., Toderich, K., et al. (2016). Quinoa for marginal environments: toward future food and nutritional security in mena and central asia regions. Front. Plant Sci. 7, 346. doi: 10.3389/fpls.2016.00346.
38. Dharm S. (2019). Quioa: potential crop for future food, hearlth secrurity, livelihood generation and poverty eradication, India. P. 285.
39. Dimitrios B, Ioanna K, Anestis K, Ilias T, Vassilis T, Dimitra H,. (2012). Seed and Saponin Production of Organic Quinoa (Chenopodium quinoa Willd.) for different Tillage and Fertilization. Print ISSN 0255-965X; Electronic 1842-4309. Not Bot Horti Agrobo, 42-46.
40. Ding, Z., Kheir, A. M. S., Ali, M. G. M., Ali, O. A. M., Abdelaal, A. I. N., Lin, X., et al. (2020). The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Sci. Rep. 10, 2736. doi: 10.1038/s41598-020-59650-8.
41. Edgerton, M.D., (2009). Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol. 149 (1): 7-13.
42. Edwards S and Hailu A. (2011). How to make compost and use? In: Ching L L, Edwards S and Nadia H S (Eds), Climate Change and Food Systems Resilience in SubSarahan Africa. FAO, Italy. 2011;379- 436.
43. Eissa MA, Al-Yasi HM, Ghoneim AM, Ali EF, El Shal R (2022). Nitrogen and compost enhanced the phytoextraction potential of Cd and Pb from contaminated soils by Quail Bush [Atriplex lentiformis (Torr.) S.Wats]. J Soil Sci Plant Nutr 22:177–185. https://doi.org/10.1007/s42729-021-00642-6.
44. Encina-Zelada, C., Cadavez, V., Pereda, J., Gomez-Pando, L., Salva-Ruiz, B., Teixeira, J. A., et al. (2017). Estimation of composition of quinoa (Chenopodium quinoa Willd.) grains by near-infrared transmission spectroscopy. Lwt-Food Sci. Technol. 79, 126–134. doi: 10.1016/j.lwt.2017.01.026.
45. FAOSTAT. (2013). Quinoa area and production in the world. Available at: http;//www.fao.org. (accessed on 7/3/2013).46. Food and Agriculture Organization of the United Nations (FAO) (2012(. Food and Agriculture Organization of the United Nations - Statistics. Available at: http://faostat.fao.org. (accessed on 2/9/2019).
47. Faostat (2022). Crops and livestock production. Rome, Italy: Statistics Division, Food and Agriculture Organization of the United Nations. Available online at: https://www.fao.org/faostat/en/#data/QCL (accessed January 31, 2022).
48. FAO (Food and Agricultural Organization of the United Nations). (2011). Quinoa: An ancient crop to contribute to world food security. In Bojaanic ed. Region Office for Latin America and Caribbean, pp. 63.
49. Food and Agriculture Organization of the United Nations (FAO) (2013)a. International Year of Quinoa IYQ-2013. Available at: http://www.rlc.fao.org/en/about-fao/iyq-2012/ (accessed on 11/3/2013).
50. Food and Agriculture Organization of the United Nations FAO (2013)b. International Year of Quinoa IYQ-2013. http://www.rlc.fao.org/en/about-fao/iyq-2012/ (accessed 11 March 2013; verified 11 March 2013). Food and Agriculture Organization of the United Nations.
51. Food and Agriculture Organization of the United Nations, (2017). Quinoa, regional project Technical assistance to promote the quinoa diet in Algeria. Egypt, Iraq, Iran, Lebanon, Mauritania, Sudan, Yemen. Country Office of the United Nations Food and Agriculture Organization of the United Nations http://www.fao.org/.
52. Fürnkranz, M.; Müller, H.; Berg, G. (2009). Characterization of plant growth promoting bacteria from crops in Bolivia. J. Plant Dis. Protect., 116, 149–155.
53. Geng Y, Cao G, Wang L, Wang S (2019) Efects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PloS one 14. https://doi.org/10.1371/journal.pone.0219.
54. Geren, H.; Y. Kavut; G. Toopcu; S. Ekren; and D. Istlpliler (2015). Effect of different sowing dates on grain yield and some yield components of quinoa(Chenopodium quinoa Willd) growth under Mediterranean climatic conditions. Egeuniversitesi ziraat Fakultesi Dergisi. 51 (3): 297-305.
55. Gomez-Pando LR, Aguilar-Castellanos E, Ibañez-Tremolada M (2019). Quinoa (Chenopodium quinoa Willd.) breeding. In: In advances in plant breeding strategies: cereals. Springer, Cham, pp 259–316. https://doi.org/10.1007/ 978-3-030-23108-8_7.
56. González, J. A., Konishi, Y., Bruno, M., Valoy, M., & Prado, F. E. (2012). Interrelationships among seed yield, total protein and amino acid composition of ten quinoa (Chenopodium quinoa) cultivars from two different agroecological regions. Journal of the Science of Food and Agriculture, 92, 1222–1229. https://doi.org/10.1002/jsfa.4686.
57. González-Teuber, M., Urzúa, A., Plaza, P. and Bascuñán-Godoy, L. (2018). Effects of root endophytic fungi on response of Chenopodium quinoa to drought stress. Plant Ecol. 219, 231-240.
58. Gunda Schulte auf’m Erleya, Hans-Peter Kaula, Markus Kruseb, Walter Aufhammerb, (2005). Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. University of Hohenheim, Fruwirthstr. 23, 70599 Stuttgart, Germany.
59. Gupta A.K., Pankaj P.K., Upadhyaya V. (2008). Effect of vermicompost, farm yard manure, biofertilizer and chemical fertilizers (NPK) on growth, yield and quality of Abelmoschus esculentus. Pollution Research 27 (1): 65-68.
60. Hadj. H. B., (2019). Etude de comportement Agonomique de Quelques Varietes ed Quinoa (Chénopodium Quinoa Willd). Dans La Region D'adrar; Zone de Tsabit Master Academique. Université Ahmed Draïa Adrar.de Sciences de la Nature et de la Vie.p:18.
61. Hammam, K. A. and Mansour, F. S. (2018). Effect. of Irrigation Rates and Organic Fertilaization on Growth, Yield and Active Constituents of Quinoa (Chénopodium Quinoa Willd). Plant. Egypt. J. Agric. Res., 96 (4).
62. Hanna AL, Hayam MH, Hanan AG, Mahoud WS, Farahat SM, Ghoneim AM, Alenezi AM, Alnomasy SF, Alam A, Elsayed TR (2022). Biosynthesis andcharacterization of silver nanoparticles produced by Phormidium ambiguum and Desertiflum tharense Cyanobacteria. Bioinorg Chem and App. https://doi.org/10.1155/ 2022/9072508.
63. Hepperly P, Lotter D, Ulsh CZ, Siedel R, Reider C (2009). Compost, manure and synthetic fertilizer infuences crop yields, soil properties, nitrate leaching and crop nutrient content. Compost Sci Utilization 17:117–126. https://doi.org/10.1080/1065657X. 2009.10702410.
64. Hassan A. Fawy, Moharam F. Attia and Rehab H. Hagab., (2017). Effect of Nitrogen Fertilization and Organic Acids on Grains Productivity and Biochemical Conditions of RAS SADERSINAI. Soil Fertility and Microbiology Department, Desert Research Center. Egyptian J. Desert Res., 67, No. 1, 171-185.
65. Haynes, R. J., and R. Naidu. (1998). Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: Areview. Nuttr. Cycling AgroECOsvst. 51: 123-137.
66. Herbillo. M, (2015). Le quinoa: Intèrét nutritionnel et perspectives pharmaceutiques. Ed ; Universitè de Rouen-Normandie. Rouen. France.P34.
67. Himanshi, H. P., & Shroff, J. C. (2020). Growth, Yield and Economics of Finger nillet [Eleusine coracana (L.) Gaertn] as Influenced by Integrated Nutrient Management. International Journal of Current Microbiology and Applied Sciences, 11;729.
68. Ιoanna P. Kakabouki, Dimitra Hela, Ioannis Roussis, Panagiota Papastylianou, Adriana F. Sestras. Dimitrios J. Bilalis., (2018). Influence of fertilization and soil tillage on nitrogen uptake and utilization efficiency of quinoa crop (Chenopodium quinoa Willd.). Journal of Soil Science and Plant Nutrition, 18 (1), 220-235.
69. Ismail. M., Nidal. F., Mohamed. H., Abdelmounaaim. A., and Latefa. B., (2020). Plant Growth Enhancement using Rhizospheric Halotolerant Phosphate Solubilizing Bacterium Bacillus licheniformis QA1 and Enterobacter asburiae QF11 Isolated from Chenopodium quinoa Willd. Microorganisms2020, 8, 948; doi:10.3390/microorganisms8060948. www.mdpi.com/journal/microorganisms.
70. Jack, A. L. H., & Thies, J. E. (2006). Compost and vermicompost as amendments promoting soil health. In N. Uphoff (Ed.), Biological Approaches to Sustainable Soil Systems (pp. 453–466). Boca Raton, Florida: CRC Press.
71. Jacobsen, S. E., & Stølen, O. (1993). Quinoa - morphology, phenology and prospect for its production as a new crop in Europe. Eur. J. Agron. 2: 19-29.
72. Jacobsen, S.E.C. Monteros, J.L., Christiansen, L.A., Bravo, Cor- cuera, L.J. and Mujica, A. (2005). Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. Eur. J. of Agron, 22(2), 131-139.
73. Jacobsen SE. (2017). The scope for adaptation of quinoa in northern latitudes of Europe. J Agron Crop Sci. 2017;203: 603–613.
74. Jarvis, D.E.; Ho, Y.S.; Lightfoot, D.J.; Schmöckel, S.M.; Li, B.; Borm, T.J.A.; Ohyanagi, H.; Mineta, K.; Michell, C.T.; Saber, N.; et al (2017). The genome of Chenopodium quinoa. Nature, 542, 307–312.
75. Javaid A (2011). Efects of bio-fertilizers combined with diferent soil amendments on potted rice plants. Chilean J Agric Res 71:157–163.
76. Jellen, E.; Maughan, P.; Bertero, D.; Munir, H. (2013). Prospects for Quinoa (Chenopodium Quinoa Willd.) improvement through biotechnology. In Biotechnology of Neglected and Underutilized Crops; Mohan, S., Gupta, D., Eds.; Springer: Berlin/Heidelberg, Germany; pp. 173–203.
77. Juergens M. T., Deshpande R.R., Lucker B.F., Park J.J., Wang H., Gargouri M., Kramer D. M., )2015(. The regulation of photosynthetic structure and function during nitrogen deprivation in Chlamydomonas reinhardtii. Plant Physiology 167(2), 558-573.
78. Kadhum, A. A.; Alobaidy, B. Sh. J. and Al-Joboory, W. (2021). Effect of bio and mineral fertilizers on growth and yield of wheat (Triticum estivum L.). IOP Conf. Ser., Earth Environ. Sci., 761: 012004.
79. Kansomjet, P. Thobunluepop, P. Lertmongkol, S. Sarobol, E. Kaewsuwan, P. Junhaeng, P. Pipattanawong, N. and Iván, M.T. (2017). Response of Physiological Characteristics, Seed Yield and Seed Quality of Quinoa underDifference of Nitrogen Fertilizer Management. American Journal of Plant PhysiologyS. ISSN 1557-4539 DOI: 10.3923/ajpp.
80. Karotis, T., Iliadis, C., Noulas, C., and Mitsibonas, T (2003). preliminary resarch on seed production and nutrient content for certain quinoa varieties in salinesodic. Soil J. Agron. Crop Sci.189,402-408.
81. Kaul HP, Kruse M, Aufhammer W. (2005). Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. Eur. J. Agron. ;22:95– 100.
82. Kerin, V., & Berova, M. (2003). Foliar fertilization in plants. Videnov & Son, Sofia, Great Britain. P. 62-66.
83. Kolano, B., Siwinska, D., Gomez, Pando L., Szymanowska-Pulka, J., & Maluszynska, J. (2012). Genome size variation in Chenopodium quinoa (Chenopodiaceae). Plant Systematics and Evolution, 298, 251–255. https://doi.org/10.1007/s00606-011-0534-z.
84. Lateifa S. A, (2012). Biofertilizer and its role in reducing water pollution problems with chemical fertilizers. Libyan Agriculture Research Center Journal international 3(S2), 1457-1466.
85. Lazcano C., Gomez B. M., Dominguez j. (2008). Comparison of the Effectiveness of composting and Vermicomposting foe the Biological Stabilization of Cattle Manure. Doi: 10.1016/j.chempophere.2008.04.016. E-mail:
[email protected].
86. Letelier, M.E.; C. Rodríguez-Rojas; and S. Sánchez-Jofré (2011). Surfactant and antioxidant properties of an extract from Chenopodium quinoa Willd seed coats. J. Cereal Sci., 53(2):239–243.
87. Mahdi. A., Mahmoud. R. T., Rahim. E., (2021). Energy and exergy efficiencies assessment for two Quinoa cultivars productions. Energy Reports 7. 2324–2331. https://doi.org/10.1016/j.egyr.2021.04.043.
88. Mallory, Ellen. B. and Porter, Gregory. A. (2007). Potato yield stability under contrasting soil management strategies. Soil Science Society of Amerecan Journal. 99:501.89. Mishra D.J.1, Singh Rajvir, Mishra U.K. and Shahi Sudhir Kumar., (2013). Role of Bio-Fertilizer in Organic Agriculture: A Review. Research Journal of Recent Sciences ISSN 2277-2502. Vol. 2 (ISC-2012), 39-41.
90. Misra, R. V. and others (2003). On-farm Composting Methods. Roma, Italy; United Nations Food and Agriculture Organization. Available from https://www.fao.org/3/a-y5104e.pdf.
91. Mishar.B.K. and d-Danch. S.K, (2010). Methodology of nitrogen biofertilizer production. J. Adv. Dev. Res.1:1 3-6. journal-advances-developmental-research.com.
92. Mubarak, M. J., (2020). Quinoa response to different transplanting dates and nitrogen fertilization levels in an arid environment. Italian Journal of Agrometeorology. (2):77-89. DOI: 10.13128/ijam-962.
93. Mohamed SA, Medani RA. (2005). Effect of bio-and organic fertilization in combination with different levels of mineral fertilization on growth, yield, anatomical structure and chemical constituents of wheat plant growth in sandy soil. Egyptian Journal of Applied Science.;20(5):503-526.
94. Mosa WFA, Paszt LS, Abd El-Megeed NA (2014). The Role of Biofertilization in Improving Fruits Productivity. A Rev Adv Microbiol 4:1057–1064. https://doi.org/10.4236/aim.2014.415116.
95. Mohan. P., Singh. A.K., Dwivedi. B.S, Nitin. S. and Yati. R. K. (2022). Response of NPK levels and biofertilizers on growth, yield and quality of quinoa (Chenopodium quinoa). The Pharma Innovation Journal 2022; 11(11): 642-645. www.thepharmajournal.com. Received: 13-09-2022 Accepted: 20-10-2022.
96. Munnoli, P. M., Teixeira da Silva, J. A., & Bhosle, S. (2010). Dynamics of the soil-earthworm-plant relationship: A review. In J. A. Teixeira da Silva (Ed.), Special Issue II on Vermitechnology: Volume 4 Special Issue 1. Dynamic soil, dynamic plant (pp. 1–21). Global Science Books.
97. Oteino, N.; Lally, R.D.; Kiwanuka, S.; Lloyd, A.; Ryan, D.; Germaine, K.J.; Dowling, D.N. (2015). Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol., 6, 74598. Panayiota P., Ioanna K., Eleni T., Ilias T., Dimitrios B., Dimitra H., Demosthenis C., George A., George Z., (2014). Effect of Fertilization on Yield and Quality of Biomass of Quinoa (Chenopodium quinoa Willd.) and Green Amaranth (Amaranthus retroϔlexus L.). Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Bulletin UASVM Horticulture. Print ISSN 1843-5254, Electronic ISSN 1843-5394. https://www.researchgate.net/publication/269364965.
99. Paulin B and Peter OM. (2013). Compost Production and Use in Horticulture. Western Australian Agri. Authority, Bulletin. 2008;4746. [Online] Available:www.agric.wa.gov.au (Nov. 2013).
100. Pathan, S. and Siddiqui, R. A. (2022). Nutritional composition and bioactive components in Quinoa (Chenopodium Quinoa Willd.). Greens: A Review. MDPI Journals. 14(3), 558. Available at: doi.org/10.3390/nu14030558.
101. Petra. H. C., Lucie. D., Iva. V., Michal., J. and Dagmar., J. (2022). Diversity of quinoa genetic resources for sustainable production: A survey on nutritive characteristics as influenced by environmental conditions. PUBLISHED 26 October. DOI 10.3389/fsufs.2022.960159.
102. Peyvast G., Olfati J.A., Madeni S., Forghani A. (2008). Effect of vermicompost on the growth and yield of spinach (Spinacia oleracea L.). Journal of Food Agriculture and Environment 6 (1): 110-113.
103. Poon pong ST, Vearcsilp S, Paweizic E, Gorinsteins T. (2008). Influence of various nitrogen application on nitrogen, protein and quinoa acid profiles of amaranth and Quinoa. J. Agric. Food Chem.;56(23):1146- 11470.
104. Prabha K.P, Loretta Y.L., Usha R.K. (2007). An experimental study of vermin-biowaste composting for agricultural soil improvement. Bioresource Technology 99: 1672-1681.
105. Prasad H, Sajwan P, Kumari M, Solanki SPS (2017). Efect of organic manures and bio-fertilizer on plant growth, yield and quality of horticultural crop: a review. Inte J Chem Stud 5:217–221.106. Premsekhar M., Rajashree V. (2009). Influence of organic manures on growth, yield and quality of okra. American Eurasian Journal of Sustainable Agriculture 3 (1): 6-8.
107. Rahimi A, Moghaddam SS, Ghiyas M, Heydarzadeh S, Ghazizadeh K, Djordjevic JP (2019). The infuence of chemical, organic and biological fertilizers on agrobiological and antioxidant properties of syrian cephalaria (Cephalaria Syriaca L.). Agriculture 9:122. https://doi.org/10.3390/agriculture9060122.
108. Razzaghi, F.; Jacobsen, S.; Jensen, C.R.; Neumann, M. (2015). Ionic and photosynthetic homeostasis in quinoa challenged by salinity and drought-mechanisms of tolerance. Funct. Plant Biol. 42, 136–148. [CrossRef].
109. Reddy and Reddy; 2023. Performance of Quinoa under Rainfed Alfisols of South Peninsular India. Int. J. Environ. Clim. Change, vol. 13, no. 11, pp. 2950-2955; Article no.IJECC.108971.
110. Repo-Carrasco-Valencia, R., Hellström, J.K., Pihlava, J.M. & Mattila. P.H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kaniwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem. 120: 128-133.
111. Repo, C.; and L. Serna (2011). Quinoa (Chenopodium quinoa, Willd.) as a source of dietary fiber and other functional components. Food Sci Technol (Campinas). 31(1):225–230.
112. Rojas, W., Milton, P., Alanoca, C., Gómez Pando, L., Leónlobos, P., Alercia, A., et al. (2015). “Quinoa genetic resources and ex situ conservation,” in State-of-the-Art Report on Quinoa Around the World in 2013, eds. D. Bazile, D. Bertero and C. Nieto (Rome: FAO/CIRADE), 56–82.
113. Roman, P. Martínez, María, M. and Pantoja, A. (2015). Farmer’s Compost Handbook Expreiences in Latin America Food and Agriculture Organization of the United Nations Regional Office for Latin America and the Caribbean Santiago. Avail from; https://www.fao.org/3/a-i3388e.pdf.
114. Saudi, A. R.; and Arwa, A. A.; Mostafa, G.; Sami, S. A.; Adel, M. G. (2023). Compost and Humic Acid Mitigate the Salinity Stress on Quinoa(Chenopodium quinoa Willd L.) and Improve Some Sandy Soil Properties. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-023-01221-7.
115. Saharan, B. and Nehra, V. (2011). Plant growth promoting rhizobacteria: a critical review. Life Sciences and Medicine Research, 21, 30.
116. Saroussi S., Sanz-Luque E., Kim R.G., Grossman A.R., )2017(. Nutrient scavenging and energy management: acclimation responses in nitrogen and sulfur deprived Chlamydomonas. Current opinion in plant Biology 39, 114-122.
117. Schionning, P.; Elmholt, S. and Christensen, B.T (2004). Managing Soil Quality – challenges in modern Agriculture. CABI publishing. 344 pages.
118. Schulte, A.E.G., H.P. Kaul, M. Kruse and W. Aufhammer, (2005). Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. European Journal of Agronomy. 22(1): 95-100.
119. Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils., 2, 587.
120. Sharma A, Chetani R. A. (2017). Review on the Effect of Organic and Chemical Fertilizers on Plants. International Journal for Research in Applied Science & Engineering Technology. 2017;5(II):677- 680.
121. Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016). Role of bio-fertilizers in conservation agriculture. In Cons Agric 113-134. https://doi.org/10.1007/978-981-10-2558-7-4.
122. Singh, R. P., Singh, P., Araujo, A. S. F., Hakimi Ibrahim, M., & Sulaiman, O. (2011). Management of urban solid waste: Vermicomposting a sustainable option. Resources, Conservation, and Recycling, 55(7), 719–729.
123. http://dx.doi.org/10.1016/j.resconrec.2011.02.005.
124. Sinha, R. K., Herat, S., Agarwal, S., Asadi, R., & Carretero, E. (2002). Vermiculture and waste management: study of action of earthworms Elsinia foetida, Eudrilus euginae and Perionyx excavatus on biodegradationof some community wastes in India and Australia. Environmentalist, 22(3), 261–268. http://dx.doi.org/10.1023/A:1016583929723.
125. Stikic, R., Glamoclija, Dj., Demin, M., Vucelic-Radovic, B., Jovanovic, Z., Milojkovic-Opsenica, D., Jacobsen, S.-E., & Milovanovic, M. (2012). Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. J. Cereal Sci. 55: 132-138.
126. Solomon WGO, Ndana RW, Abdulrahim Y. (2012). The Comparative study of the effect of organic manure cow dung and inorganic fertilizer NPK on the growth rate of maize (Zea mays L.). International Research Journal of Agricultural Science and Soil Science. 2012;2:516-519.
127. Soltanzadeh, A., Ghanbari, A., Seyedabadi, E., Dahmardeh, M. (2021). Effects of chemical fertilizers and vermicompost on morphological and chemical characteristics of quinoa (Chenopodium quinoa). journal of crops improvement, (8), pp. doi;10.22059/jci.2021.323005.2546.
128. Soltanzadeh, A., Seyedabadi, E., Ghanbari, A., & Dahmardeh, M. (2023). Effects of Chemical Fertilizers and Vermicompost on Morphological and Chemical Characteristics of Quinoa (Chenopodium quinoa). Journal of Crops Improvement, 25 (1), 209-220. DOI: https://doi.org/10.22059/jci.2021.323005.2546.
129. Suresh Naik, R Paramesh, R Siddaraju, P Ravi Shankar and Mudalagiriyappa., (2020). Studies on growth parameters in quinoa (Chenopodium quinoa Willd.). International Journal of Chemical Studies: 393-397. https://doi.org/10.22271/chemi.2020.v8.i1f.8278.
130. Suthar S. (2009). Impact of vermicompost and composted farm yard manure on growth and yield of garlic (Allium stivum L.) field crop. International Journal of Plant Production 3 (1): 27-38.
131. Suthar S., Choyal R., Singh S., Sudesh. (2005). Stimulatory effect of earthworm body fluid (vermiwash) on seed germination and seedling growth of two legumes. Journal of Phytological Research 18 (2): 219222132. Tayebeh A, Abass A, Seyed A K. (2010). Effect of organic and inorganic fertilizers on grain yield and protein banding pattern of wheat. Australian Journal of Crop Science (AJCS). 2010;4(6):384-389.
133. Telahigue, D.C.; Ben Laila, Y.; Aljane, F.; Belhouchett, K.; Toumi, L. (2017). Grain yield, biomass productivity and water use e_ciency in quinoa (Chenopodium quinoa Willd.) under drought stress. J. Sci. Agric, 1, 222–232.
134. Thiam, E.; Allaoui, A.; Benlhabib, O. (2021). Quinoa Productivity and Stability Evaluation through Varietal and Environmental Interaction. Plants, 10, 714. https://doi.org/10.3390/ plants10040714.
135. Vance, C.P.; Uhde-Stone, C.; Allan, D.L. (2003). Phosphorus Acquisition and Use: Critical Adaptations by Plants for Securing a Nonrenewable Resource. New Phytol. 2003, 157, 423–447.
136. Vermicomposting. P.K, N (2004). Recycling Wastes into Valuable Organic Fertilizer. Global Theme on Agroecosystems Report No. 8. Andhra Pradesh, India; International Crops Research Institute for Semi- Arid Tropics. Available from http;//oar.icisat.org/3677/1/172-2004.pdf.
137. Vidueiros, S.M.; Curti, R.N.; Dyner, L.M.; Binaghi, M.J.; Peterson, G.; Bertero, H.D.; Pallaro, A.N., (2015). Diversity and interrelationships in nutritional traits in cultivated quinoa (Chenopodium quinoa Willd.) from Northwest Argentina. J. Cereal Sci. 62, 87–93.
138. Vega-Gálvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martínez, E.A., (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. J.Sci. Food Agric. 90, 2541–2547.
139. Venkatashwarlu B. Role of bio-fertilizers in organic farming., (2008). Organic farming in rain fed agriculture. Central institute for dry land agriculture, Hyderabad, 85-95.
140. Wang, N., Wang, F., Shock, C. C., Meng, C., Qiao, L. (2020). Effect of Management Practices on Quinoa Growth, Seed Yield, and Quality. Agronomy, 10, 445. https;//doi.org/10.3390/agronomy10030445.141. Wani, S.P. and Lee K.K., (2002). Population dynamics of nitrogen fixing bacteria associated with pearl millet (P. americanum L.), In biotechnology of nitrogen fixation in the tropics. University of Pertanian, Malaysia, 21-30.
142. Wichuk KM, Mc Cartney D., (2007). A review of the effectiveness of current time–temperature regulations on pathogen inactivation during
composting. J Environ Engin Sci 6:573–586. https://doi.org/10. 1139/S07-011.
143. Wei, Y.; Zhao, Y.; Wang, H.; Lu, Q.; Cao, Z.; Cui, H.; Zhu, L.; Wei, Z. )2016(. An optimized regulating method for composting phosphorus fractions transformation based on biochar addition and phosphate-solubilizing bacteria inoculation. Bioresour Technol, 221, 139–146.
144. Yang, A.; Akhtar, S.S.; Iqbal, S.; Amjad, M.; Naveed, M.; Zahir, Z.A.; Jacobsen, S.-E. (2016). Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Funct. Plant Biol., 43, 632–642.
145. Yang, X. S., Qin, P. Y., Guo, H. M., and Ren, G. X. (2019). Quinoa industry development in China. Ciencia E Invest. Agraria 46, 208–219. doi: 10.7764/rcia.v46i2.2157.
146. Youssef. M. A. and Hassan. M. I. F. (2021). Co-application of Organic Manure and Bio-fertilizer to Improve Soil Fertility and Production of Quinoa and Proceeding Jew’s Mallow Crops. Journal of Soil Science and Plant Nutrition https://doi.org/10.1007/s42729-021-00538-5.
147. Youssef, S.M.; Shaaban, A.; Abdelkhalik, A.; Abd El Tawwab, A.R.; Abd Al Halim, L.R.; Rabee, L.A.; Alwutayd, K.M.; Ahmed, R.M.M.; Alwutayd, R.; Hemida, K.A. (2023). Compost and Phosphorus/Potassium. Solubilizing Fungus Effectively Boosted Quinoa’s Physio-Biochemical Traits, Nutrient Acquisition, Soil Microbial Community, and Yield and Quality in Normal and Calcareous Soils. Plants, 12, 3071. https:// doi.org/10.3390/plants12173071.
148. Yuda, H.; Karl M.; Yu T.; Sven-Erik Jacobsen and Sergey Shabala., (2010). Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany.Vol. 62, No. 1, pp. 185–193, doi:10.1093/jxb/erq257 Advance Access publication. This paper is available online free of all access charges.
149. Zucconi F, de Bertoldi MD (1987). Organic waste stabilization
throughout composting and its compatibility with agricultural uses .In:
Wise DL (ed) Global bioconversion. CRC, Boca Raton, pp 109–137.
150. Zhou Z., Plauborg F., Liu F., Kristensen K., Andersen M.N. )2018(. Yield and crop growth of table potato affected by different split-N fertigation regimes in sandy soil. European Journal of Agronomy 92, 41-50.