Microencapsulated phase change material via Pickering emulsion stabilized by cellulose nanofibrils for thermal energy storage
2022
Bahsi Kaya, Gulbahar | Kim, Yunsang | Callahan, Kyle | Kundu, Santanu
A phase change material (PCM) has an ability to store and release a large amount of energy in a wide range of temperature by the latent heat of fusion upon melting and crystallization. Microencapsulation may protect PCM from undesirable reaction and leaching. Herein, we report the microencapsulation of n-hexadecane via oil-in-water Pickering emulsions stabilized by non-chemically modified cellulose nanofibrils (CNF). The maximum size of PCM-CNF microcapsules was 12 ± 3.4 μm in diameter. The surface coverage of the microcapsule by CNF was as high as 67%, consistent with porous morphology of the freeze-dried microcapsules. With 59% PCM loading, the PCM-CNF microcapsule exhibited 132.5 and 141.1 J/g as stored and released thermal energy, respectively. The microcapsule slurry showed a reversible change in storage modulus by one order of magnitude across the transition temperature of n-hexadecane. Combined results demonstrate the successful microencapsulation of PCM via CNF-based Pickering emulsions for a sustainable thermal energy storage material.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library