Mycorrhizal colonization increases herbicide toxicity in apple
1994
Hamel, C. | Morin, F. | Fortin, A. | Granger, R.L. | Smith, D.L.
Herbicides are increasingly used in orchards. Since apple trees strongly depend on mycorrhizae, the effects of three commonly used herbicides on the host plant and endophyte were examined. Symbiosis between tissue-cultured P16 apple rootstocks and Glomus versiforme (Karsten) Berch was established under greenhouse conditions. Simazine (1, 2, 10, and 20 micrograms a.i/g), dichlobenil (1, 5, 10, and 25 micrograms a.i./g), paraquat (0.5, 1, 10, and 100 micrograms a.i/g), or water was applied to mycorrhizal and nonmycorrhizal plants as a soil drench. The response of mycorrhizal plants to herbicide was greater, and the relative elongation rate was more sharply reduced in mycorrhizal (76%) than in nonmycorrhizal plants (33%). Six weeks after herbicide application, dry mass reduction due to herbicides was similar (39% and 36%) for mycorrhizal and nonmycorrhizal plant shoots, respectively, while root dry mass reduction was larger for mycorrhizal (63%) than nonmycorrhizal plants (46%). None of the herbicide treatments affected root colonization. However, an in vitro hyphal elongation test with G. intraradices Schenck & Smith and herbicide-amended (0, 1, 10, 100, and 1000 micrograms/ a.i./g) gellan gum solidified water showed that either dichlobenil or paraquat, even at the lowest concentrations, could significantly reduce hyphal elongation. Simazine did not affect hyphal elongation in vitro, a result suggesting that improved absorption capacity of mycorrhizae explains, at least in part, the increased phytotoxicity of some herbicides. It was found that plant mortality was higher among mycorrhizal than nonmycorrhizal apple trees for all herbicide treatments. The increased CO2 assimilation rates of dichlobenil-treated mycorrhizal plants contrasted with the decreased rates of control plants measured 1 week after dichlobenil treatment. This indicates a physiological interaction between mycorrhizal colonization and dichlobenil in the toxic response of apple plants.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library