A simple dual-inducible CRISPR interference system for multiple gene targeting in Corynebacterium glutamicum
2019
Gauttam, Rahul | Seibold, Gerd M. | Mueller, Phillipp | Weil, Tatjana | Weiss, Tamara | Handrick, René | Eikmanns, Bernhard J.
The development of CRISPR interference (CRISPRi) technology has dramatically increased the pace and the precision of target identification during platform strain development. In order to develop a simple, reliable, and dual-inducible CRISPRi system for the industrially relevant Corynebacterium glutamicum, we combined two different inducible repressor systems in a single plasmid to separately regulate the expression of dCas9 (anhydro-tetracycline-inducible) and a given single guide RNA (IPTG-inducible). The functionality of the resulting vector was demonstrated by targeting the l-arginine biosynthesis pathway in C. glutamicum. By co-expressing dCas9 and a specific single guide RNA targeting the 5′-region of the argininosuccinate lyase gene argH, the specific activity of the target enzyme was down-regulated and in a l-arginine production strain, l-arginine formation was shifted towards citrulline formation. The system was also employed for down-regulation of multiple genes by concatenating sgRNA sequences encoded on one plasmid. Simultaneous down-regulated expression of both argH and the phosphoglucose isomerase gene pgi proved the potential of the system for multiplex targeting. The system can be a promising tool for further pathway engineering in C. glutamicum. Cumulative effects on targeted genes can be rapidly evaluated avoiding tedious and time-consuming traditional gene knockout approaches.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by National Agricultural Library